Loading…

Bimetallic-metal oxide nanoparticles of Pt-M (M: W, Mo, and V) supported on reduced graphene oxide (rGO): radiolytic synthesis and methanol oxidation electrocatalysis

Nanocatalysts of Pt and Pt-M (M: V, MO and W) supported on rGO were successfully synthesized via a simple process based on irradiation and investigated as electrocatalysts in terms of methanol oxidation in acidic medium. Morphology, purity and composition of the catalysts were analyzed by ICP, TEM,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanostructure in chemistry 2021-06, Vol.11 (2), p.287-299
Main Authors: Kianfar, Shohreh, Golikand, Ahamd Nozad, ZareNezhad, Bahman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanocatalysts of Pt and Pt-M (M: V, MO and W) supported on rGO were successfully synthesized via a simple process based on irradiation and investigated as electrocatalysts in terms of methanol oxidation in acidic medium. Morphology, purity and composition of the catalysts were analyzed by ICP, TEM, XRD, and EDX. Irradiation caused the metallic nanoparticles (from 1 to 8 nm in diameter) to be deposited on the graphene sheets without using any stabilizer and surfactant. Bimetallic nanocatalysts exhibited higher electrochemical activities of methanol oxidation comparing to monolithic Pt catalyst at ambient temperature. A considerable increase in the effective active surface area (ECSA) was observed when the tungsten was used as the second metal; this value was in the order of Pt-Mo > Pt-V > Pt for other catalysts. Finally, high catalytic activity, great durability, and stability of Pt-W offer it to be a promising electrocatalyst for development of more advanced direct alcohol fuel cells. Graphic abstract
ISSN:2008-9244
2193-8865
DOI:10.1007/s40097-020-00366-6