Loading…
The effects of pH and ionic strength on the volume phase transition temperature of thermo-responsive anionic copolymer gels
Applications of thermo-responsive (TR) gels in biomedicine and biotechnoligy require modulation of their volume phase transition temperature Tc in a rather wide interval. This is conventionally performed by incorporation of hydrophilic or hydrophobic monomers in the feed. The most pronounced growth...
Saved in:
Published in: | Polymer (Guilford) 2021-04, Vol.221, p.123637, Article 123637 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-636589fb18f7bf83c1108132bb883fce496ec9dbab0a24987edde1201a0d0fe53 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-636589fb18f7bf83c1108132bb883fce496ec9dbab0a24987edde1201a0d0fe53 |
container_end_page | |
container_issue | |
container_start_page | 123637 |
container_title | Polymer (Guilford) |
container_volume | 221 |
creator | Drozdov, Aleksey D. Christiansen, Jesper deClaville |
description | Applications of thermo-responsive (TR) gels in biomedicine and biotechnoligy require modulation of their volume phase transition temperature Tc in a rather wide interval. This is conventionally performed by incorporation of hydrophilic or hydrophobic monomers in the feed. The most pronounced growth of Tc occurs when TR monomers are copolymerized with anionic, cationic or ampholyte monomers.
The effect of ionic monomers on the volume phase transition temperature of copolymer gels is traditionally analyzed in equilibrium swelling tests in distilled water. To evaluate how pH and ionic strength of aqueous solutions affect Tc, a constitutive model is developed. Adjustable parameters are found by fitting observations on poly(N-isopropylacrylamide-co-acrylic acid) and poly(N-isopropylacrylamide-co-itaconic acid) macro- and microgels below and above their critical temperature. The ability of the model to predict Tc is validated by comparison of experimental data with results of simulation. An analytical formula is derived that describes the influence of molar fraction of comonomers, pH and molar fraction of salt in aqueous solutions on the volume phase transition temperature of TR anionic gels.
[Display omitted]
•Equilibrium swelling is modeled of temperature-sensitive anionic copolymer gels.•Material constants are found for P(NIPAm-AAc) and P(NIPAm-IAc) gels.•Results of simulation demonstrate good agreement with experimental data.•The effects of pH and ionic strength are studied on the volume phase transition tem-.Perature (VPTT).•An analytical expression is derived for VPTT of thermo-responsive ionic gels. |
doi_str_mv | 10.1016/j.polymer.2021.123637 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522846198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386121002603</els_id><sourcerecordid>2522846198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-636589fb18f7bf83c1108132bb883fce496ec9dbab0a24987edde1201a0d0fe53</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QQh43pqPdjd7EilqhYKXeg7Z7KTNsrtZk7RQ_PNm2d49zWGeeWfmQeiRkgUlNH9uFoNrzx34BSOMLijjOS-u0IyKgmeMlfQazQjhLOMip7foLoSGEMJWbDlDv7sDYDAGdAzYGTxssOprbF1vNQ7RQ7-PB-x6HBN3cu2xAzwcVAAcveqDjXbsQTeAV_HoYcxIqO9c5iEMLiEnSJFToHaXS_Ee2nCPboxqAzxc6hx9v7_t1pts-_XxuX7dZprzImY5z1eiNBUVpqiM4JpSIihnVSUENxqWZQ66rCtVEcWWpSigroEyQhWpiYEVn6OnKXfw7ucIIcrGHX2fVsokgYllTkuRqNVEae9C8GDk4G2n_FlSIkfPspGX6-XoWU6e09zLNJc-gpNN3aAt9Bpq65NVWTv7T8IfBHqL7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522846198</pqid></control><display><type>article</type><title>The effects of pH and ionic strength on the volume phase transition temperature of thermo-responsive anionic copolymer gels</title><source>Elsevier</source><creator>Drozdov, Aleksey D. ; Christiansen, Jesper deClaville</creator><creatorcontrib>Drozdov, Aleksey D. ; Christiansen, Jesper deClaville</creatorcontrib><description>Applications of thermo-responsive (TR) gels in biomedicine and biotechnoligy require modulation of their volume phase transition temperature Tc in a rather wide interval. This is conventionally performed by incorporation of hydrophilic or hydrophobic monomers in the feed. The most pronounced growth of Tc occurs when TR monomers are copolymerized with anionic, cationic or ampholyte monomers.
The effect of ionic monomers on the volume phase transition temperature of copolymer gels is traditionally analyzed in equilibrium swelling tests in distilled water. To evaluate how pH and ionic strength of aqueous solutions affect Tc, a constitutive model is developed. Adjustable parameters are found by fitting observations on poly(N-isopropylacrylamide-co-acrylic acid) and poly(N-isopropylacrylamide-co-itaconic acid) macro- and microgels below and above their critical temperature. The ability of the model to predict Tc is validated by comparison of experimental data with results of simulation. An analytical formula is derived that describes the influence of molar fraction of comonomers, pH and molar fraction of salt in aqueous solutions on the volume phase transition temperature of TR anionic gels.
[Display omitted]
•Equilibrium swelling is modeled of temperature-sensitive anionic copolymer gels.•Material constants are found for P(NIPAm-AAc) and P(NIPAm-IAc) gels.•Results of simulation demonstrate good agreement with experimental data.•The effects of pH and ionic strength are studied on the volume phase transition tem-.Perature (VPTT).•An analytical expression is derived for VPTT of thermo-responsive ionic gels.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2021.123637</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acrylic acid ; Aqueous solutions ; Constitutive models ; Copolymerization ; Copolymers ; Critical temperature ; Distilled water ; Equilibrium swelling ; Gels ; Hydrophobicity ; Ionic gel ; Ionic strength ; Ions ; Isopropylacrylamide ; Itaconic acid ; Mathematical models ; Microgels ; Monomers ; pH effects ; Phase transitions ; Temperature requirements ; Thermo-responsive gel ; Transition temperature ; Transition temperatures ; Volume phase transition temperature</subject><ispartof>Polymer (Guilford), 2021-04, Vol.221, p.123637, Article 123637</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 14, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-636589fb18f7bf83c1108132bb883fce496ec9dbab0a24987edde1201a0d0fe53</citedby><cites>FETCH-LOGICAL-c337t-636589fb18f7bf83c1108132bb883fce496ec9dbab0a24987edde1201a0d0fe53</cites><orcidid>0000-0002-6049-5813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Drozdov, Aleksey D.</creatorcontrib><creatorcontrib>Christiansen, Jesper deClaville</creatorcontrib><title>The effects of pH and ionic strength on the volume phase transition temperature of thermo-responsive anionic copolymer gels</title><title>Polymer (Guilford)</title><description>Applications of thermo-responsive (TR) gels in biomedicine and biotechnoligy require modulation of their volume phase transition temperature Tc in a rather wide interval. This is conventionally performed by incorporation of hydrophilic or hydrophobic monomers in the feed. The most pronounced growth of Tc occurs when TR monomers are copolymerized with anionic, cationic or ampholyte monomers.
The effect of ionic monomers on the volume phase transition temperature of copolymer gels is traditionally analyzed in equilibrium swelling tests in distilled water. To evaluate how pH and ionic strength of aqueous solutions affect Tc, a constitutive model is developed. Adjustable parameters are found by fitting observations on poly(N-isopropylacrylamide-co-acrylic acid) and poly(N-isopropylacrylamide-co-itaconic acid) macro- and microgels below and above their critical temperature. The ability of the model to predict Tc is validated by comparison of experimental data with results of simulation. An analytical formula is derived that describes the influence of molar fraction of comonomers, pH and molar fraction of salt in aqueous solutions on the volume phase transition temperature of TR anionic gels.
[Display omitted]
•Equilibrium swelling is modeled of temperature-sensitive anionic copolymer gels.•Material constants are found for P(NIPAm-AAc) and P(NIPAm-IAc) gels.•Results of simulation demonstrate good agreement with experimental data.•The effects of pH and ionic strength are studied on the volume phase transition tem-.Perature (VPTT).•An analytical expression is derived for VPTT of thermo-responsive ionic gels.</description><subject>Acrylic acid</subject><subject>Aqueous solutions</subject><subject>Constitutive models</subject><subject>Copolymerization</subject><subject>Copolymers</subject><subject>Critical temperature</subject><subject>Distilled water</subject><subject>Equilibrium swelling</subject><subject>Gels</subject><subject>Hydrophobicity</subject><subject>Ionic gel</subject><subject>Ionic strength</subject><subject>Ions</subject><subject>Isopropylacrylamide</subject><subject>Itaconic acid</subject><subject>Mathematical models</subject><subject>Microgels</subject><subject>Monomers</subject><subject>pH effects</subject><subject>Phase transitions</subject><subject>Temperature requirements</subject><subject>Thermo-responsive gel</subject><subject>Transition temperature</subject><subject>Transition temperatures</subject><subject>Volume phase transition temperature</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QQh43pqPdjd7EilqhYKXeg7Z7KTNsrtZk7RQ_PNm2d49zWGeeWfmQeiRkgUlNH9uFoNrzx34BSOMLijjOS-u0IyKgmeMlfQazQjhLOMip7foLoSGEMJWbDlDv7sDYDAGdAzYGTxssOprbF1vNQ7RQ7-PB-x6HBN3cu2xAzwcVAAcveqDjXbsQTeAV_HoYcxIqO9c5iEMLiEnSJFToHaXS_Ee2nCPboxqAzxc6hx9v7_t1pts-_XxuX7dZprzImY5z1eiNBUVpqiM4JpSIihnVSUENxqWZQ66rCtVEcWWpSigroEyQhWpiYEVn6OnKXfw7ucIIcrGHX2fVsokgYllTkuRqNVEae9C8GDk4G2n_FlSIkfPspGX6-XoWU6e09zLNJc-gpNN3aAt9Bpq65NVWTv7T8IfBHqL7A</recordid><startdate>20210414</startdate><enddate>20210414</enddate><creator>Drozdov, Aleksey D.</creator><creator>Christiansen, Jesper deClaville</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-6049-5813</orcidid></search><sort><creationdate>20210414</creationdate><title>The effects of pH and ionic strength on the volume phase transition temperature of thermo-responsive anionic copolymer gels</title><author>Drozdov, Aleksey D. ; Christiansen, Jesper deClaville</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-636589fb18f7bf83c1108132bb883fce496ec9dbab0a24987edde1201a0d0fe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acrylic acid</topic><topic>Aqueous solutions</topic><topic>Constitutive models</topic><topic>Copolymerization</topic><topic>Copolymers</topic><topic>Critical temperature</topic><topic>Distilled water</topic><topic>Equilibrium swelling</topic><topic>Gels</topic><topic>Hydrophobicity</topic><topic>Ionic gel</topic><topic>Ionic strength</topic><topic>Ions</topic><topic>Isopropylacrylamide</topic><topic>Itaconic acid</topic><topic>Mathematical models</topic><topic>Microgels</topic><topic>Monomers</topic><topic>pH effects</topic><topic>Phase transitions</topic><topic>Temperature requirements</topic><topic>Thermo-responsive gel</topic><topic>Transition temperature</topic><topic>Transition temperatures</topic><topic>Volume phase transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drozdov, Aleksey D.</creatorcontrib><creatorcontrib>Christiansen, Jesper deClaville</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drozdov, Aleksey D.</au><au>Christiansen, Jesper deClaville</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of pH and ionic strength on the volume phase transition temperature of thermo-responsive anionic copolymer gels</atitle><jtitle>Polymer (Guilford)</jtitle><date>2021-04-14</date><risdate>2021</risdate><volume>221</volume><spage>123637</spage><pages>123637-</pages><artnum>123637</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Applications of thermo-responsive (TR) gels in biomedicine and biotechnoligy require modulation of their volume phase transition temperature Tc in a rather wide interval. This is conventionally performed by incorporation of hydrophilic or hydrophobic monomers in the feed. The most pronounced growth of Tc occurs when TR monomers are copolymerized with anionic, cationic or ampholyte monomers.
The effect of ionic monomers on the volume phase transition temperature of copolymer gels is traditionally analyzed in equilibrium swelling tests in distilled water. To evaluate how pH and ionic strength of aqueous solutions affect Tc, a constitutive model is developed. Adjustable parameters are found by fitting observations on poly(N-isopropylacrylamide-co-acrylic acid) and poly(N-isopropylacrylamide-co-itaconic acid) macro- and microgels below and above their critical temperature. The ability of the model to predict Tc is validated by comparison of experimental data with results of simulation. An analytical formula is derived that describes the influence of molar fraction of comonomers, pH and molar fraction of salt in aqueous solutions on the volume phase transition temperature of TR anionic gels.
[Display omitted]
•Equilibrium swelling is modeled of temperature-sensitive anionic copolymer gels.•Material constants are found for P(NIPAm-AAc) and P(NIPAm-IAc) gels.•Results of simulation demonstrate good agreement with experimental data.•The effects of pH and ionic strength are studied on the volume phase transition tem-.Perature (VPTT).•An analytical expression is derived for VPTT of thermo-responsive ionic gels.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2021.123637</doi><orcidid>https://orcid.org/0000-0002-6049-5813</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2021-04, Vol.221, p.123637, Article 123637 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2522846198 |
source | Elsevier |
subjects | Acrylic acid Aqueous solutions Constitutive models Copolymerization Copolymers Critical temperature Distilled water Equilibrium swelling Gels Hydrophobicity Ionic gel Ionic strength Ions Isopropylacrylamide Itaconic acid Mathematical models Microgels Monomers pH effects Phase transitions Temperature requirements Thermo-responsive gel Transition temperature Transition temperatures Volume phase transition temperature |
title | The effects of pH and ionic strength on the volume phase transition temperature of thermo-responsive anionic copolymer gels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20pH%20and%20ionic%20strength%20on%20the%20volume%20phase%20transition%20temperature%20of%20thermo-responsive%20anionic%20copolymer%20gels&rft.jtitle=Polymer%20(Guilford)&rft.au=Drozdov,%20Aleksey%20D.&rft.date=2021-04-14&rft.volume=221&rft.spage=123637&rft.pages=123637-&rft.artnum=123637&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2021.123637&rft_dat=%3Cproquest_cross%3E2522846198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-636589fb18f7bf83c1108132bb883fce496ec9dbab0a24987edde1201a0d0fe53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522846198&rft_id=info:pmid/&rfr_iscdi=true |