Loading…

Application of approximate dispersion-diffusion analyses to under-resolved Burgers turbulence using high resolution WENO and UWC schemes

This paper presents a space-time approximate diffusion-dispersion analysis of high-order, finite volume Upwind Central (UWC) and Weighted Essentially Non-Oscillatory (WENO) schemes. We perform a thorough study of the numerical errors to find a-priori guidelines for the computation of under-resolved...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2021-06, Vol.435, p.110246, Article 110246
Main Authors: Solán-Fustero, P., Navas-Montilla, A., Ferrer, E., Manzanero, J., García-Navarro, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-f25b578f8304fd638526c205dba3d7a14d4d6013609108f7d56d2428bc10e6043
cites cdi_FETCH-LOGICAL-c325t-f25b578f8304fd638526c205dba3d7a14d4d6013609108f7d56d2428bc10e6043
container_end_page
container_issue
container_start_page 110246
container_title Journal of computational physics
container_volume 435
creator Solán-Fustero, P.
Navas-Montilla, A.
Ferrer, E.
Manzanero, J.
García-Navarro, P.
description This paper presents a space-time approximate diffusion-dispersion analysis of high-order, finite volume Upwind Central (UWC) and Weighted Essentially Non-Oscillatory (WENO) schemes. We perform a thorough study of the numerical errors to find a-priori guidelines for the computation of under-resolved turbulent flows. In particular, we study the 3-rd, 5-th and 7-th order UWC and WENO reconstructions in space, and 3-rd and 4-th order Runge-Kutta time integrators. To do so, we use the approximate von Neumann analysis for non-linear schemes introduced by Pirozzoli. Moreover, we apply the “1% rule” for the dispersion-diffusion curves proposed by Moura et al. [41] to determine the range of wavenumbers that are accurately resolved by each scheme. The dispersion-diffusion errors estimated from these analyses agree with the numerical results for the forced Burgers' turbulence problem, which we use as a benchmark. The cut-off wavenumbers defined by the “1% rule” are evidenced to serve as a good estimator of the beginning of the dissipation region of the energy cascade and they are shown to be associated to a similar level of dissipation, with independence of the scheme. Finally, we show that WENO schemes are more diffusive than UWC schemes, leading to stable simulations at the price of more dissipative results. It is concluded both UWC and WENO schemes may be suitable schemes for iLES turbulence modeling, given their numerical dissipation level acting at the appropriate wavenumbers. •A space-time dispersion-diffusion analysis of UWC-RK and WENO-RK is presented.•The “1% rule” determines the wavenumbers that are accurately resolved.•Cut-off wavenumbers are obtained for each scheme and different CFL numbers.•The results are supported by the forced Burgers turbulence problem.•UWC and WENO may be suitable for iLES, being WENO more dissipative than UWC.
doi_str_mv 10.1016/j.jcp.2021.110246
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522848967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121001418</els_id><sourcerecordid>2522848967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f25b578f8304fd638526c205dba3d7a14d4d6013609108f7d56d2428bc10e6043</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHaWWKeMncRxxKpU_EkVbEAsrdQet45CEuwE0RtwbNyWNasZad6bmfcRcslgxoCJ63pW637GgbMZY8AzcUQmDEpIeMHEMZlAnCRlWbJTchZCDQAyz-SE_Mz7vnG6GlzX0s7Squ999-0-qgGpcaFHH-IkMc7acdfRqq2abcBAh46OrUGfeAxd84WG3o5-HfV0GP1qbLDVSKOnXdONW2_oXjbu77zfPb_ERYa-vS9o0Bv8wHBOTmzVBLz4q1Pydn_3unhMli8PT4v5MtEpz4fE8nyVF9LKFDJrRCpzLjSH3Kyq1BQVy0xmBLBUQMlA2sLkwvCMy5VmgAKydEquDntjzs8Rw6DqbvQxVFA851xmshRFVLGDSvsuBI9W9T5C8VvFQO2Aq1pF4GoHXB2AR8_NwYPx_S-HXgXtdhSM86gHZTr3j_sXO1CKKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522848967</pqid></control><display><type>article</type><title>Application of approximate dispersion-diffusion analyses to under-resolved Burgers turbulence using high resolution WENO and UWC schemes</title><source>ScienceDirect Freedom Collection</source><creator>Solán-Fustero, P. ; Navas-Montilla, A. ; Ferrer, E. ; Manzanero, J. ; García-Navarro, P.</creator><creatorcontrib>Solán-Fustero, P. ; Navas-Montilla, A. ; Ferrer, E. ; Manzanero, J. ; García-Navarro, P.</creatorcontrib><description>This paper presents a space-time approximate diffusion-dispersion analysis of high-order, finite volume Upwind Central (UWC) and Weighted Essentially Non-Oscillatory (WENO) schemes. We perform a thorough study of the numerical errors to find a-priori guidelines for the computation of under-resolved turbulent flows. In particular, we study the 3-rd, 5-th and 7-th order UWC and WENO reconstructions in space, and 3-rd and 4-th order Runge-Kutta time integrators. To do so, we use the approximate von Neumann analysis for non-linear schemes introduced by Pirozzoli. Moreover, we apply the “1% rule” for the dispersion-diffusion curves proposed by Moura et al. [41] to determine the range of wavenumbers that are accurately resolved by each scheme. The dispersion-diffusion errors estimated from these analyses agree with the numerical results for the forced Burgers' turbulence problem, which we use as a benchmark. The cut-off wavenumbers defined by the “1% rule” are evidenced to serve as a good estimator of the beginning of the dissipation region of the energy cascade and they are shown to be associated to a similar level of dissipation, with independence of the scheme. Finally, we show that WENO schemes are more diffusive than UWC schemes, leading to stable simulations at the price of more dissipative results. It is concluded both UWC and WENO schemes may be suitable schemes for iLES turbulence modeling, given their numerical dissipation level acting at the appropriate wavenumbers. •A space-time dispersion-diffusion analysis of UWC-RK and WENO-RK is presented.•The “1% rule” determines the wavenumbers that are accurately resolved.•Cut-off wavenumbers are obtained for each scheme and different CFL numbers.•The results are supported by the forced Burgers turbulence problem.•UWC and WENO may be suitable for iLES, being WENO more dissipative than UWC.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110246</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Burgers' turbulence ; Computational fluid dynamics ; Computational physics ; Diffusion ; Dispersion-diffusion analysis ; High-order schemes ; Implicit Large Eddy Simulation ; Integrators ; Numerical dissipation ; Runge-Kutta method ; Turbulence ; Von Neumann ; Weighted essentially non-oscillatory WENO</subject><ispartof>Journal of computational physics, 2021-06, Vol.435, p.110246, Article 110246</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jun 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f25b578f8304fd638526c205dba3d7a14d4d6013609108f7d56d2428bc10e6043</citedby><cites>FETCH-LOGICAL-c325t-f25b578f8304fd638526c205dba3d7a14d4d6013609108f7d56d2428bc10e6043</cites><orcidid>0000-0003-1519-0444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Solán-Fustero, P.</creatorcontrib><creatorcontrib>Navas-Montilla, A.</creatorcontrib><creatorcontrib>Ferrer, E.</creatorcontrib><creatorcontrib>Manzanero, J.</creatorcontrib><creatorcontrib>García-Navarro, P.</creatorcontrib><title>Application of approximate dispersion-diffusion analyses to under-resolved Burgers turbulence using high resolution WENO and UWC schemes</title><title>Journal of computational physics</title><description>This paper presents a space-time approximate diffusion-dispersion analysis of high-order, finite volume Upwind Central (UWC) and Weighted Essentially Non-Oscillatory (WENO) schemes. We perform a thorough study of the numerical errors to find a-priori guidelines for the computation of under-resolved turbulent flows. In particular, we study the 3-rd, 5-th and 7-th order UWC and WENO reconstructions in space, and 3-rd and 4-th order Runge-Kutta time integrators. To do so, we use the approximate von Neumann analysis for non-linear schemes introduced by Pirozzoli. Moreover, we apply the “1% rule” for the dispersion-diffusion curves proposed by Moura et al. [41] to determine the range of wavenumbers that are accurately resolved by each scheme. The dispersion-diffusion errors estimated from these analyses agree with the numerical results for the forced Burgers' turbulence problem, which we use as a benchmark. The cut-off wavenumbers defined by the “1% rule” are evidenced to serve as a good estimator of the beginning of the dissipation region of the energy cascade and they are shown to be associated to a similar level of dissipation, with independence of the scheme. Finally, we show that WENO schemes are more diffusive than UWC schemes, leading to stable simulations at the price of more dissipative results. It is concluded both UWC and WENO schemes may be suitable schemes for iLES turbulence modeling, given their numerical dissipation level acting at the appropriate wavenumbers. •A space-time dispersion-diffusion analysis of UWC-RK and WENO-RK is presented.•The “1% rule” determines the wavenumbers that are accurately resolved.•Cut-off wavenumbers are obtained for each scheme and different CFL numbers.•The results are supported by the forced Burgers turbulence problem.•UWC and WENO may be suitable for iLES, being WENO more dissipative than UWC.</description><subject>Burgers' turbulence</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Diffusion</subject><subject>Dispersion-diffusion analysis</subject><subject>High-order schemes</subject><subject>Implicit Large Eddy Simulation</subject><subject>Integrators</subject><subject>Numerical dissipation</subject><subject>Runge-Kutta method</subject><subject>Turbulence</subject><subject>Von Neumann</subject><subject>Weighted essentially non-oscillatory WENO</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHaWWKeMncRxxKpU_EkVbEAsrdQet45CEuwE0RtwbNyWNasZad6bmfcRcslgxoCJ63pW637GgbMZY8AzcUQmDEpIeMHEMZlAnCRlWbJTchZCDQAyz-SE_Mz7vnG6GlzX0s7Squ999-0-qgGpcaFHH-IkMc7acdfRqq2abcBAh46OrUGfeAxd84WG3o5-HfV0GP1qbLDVSKOnXdONW2_oXjbu77zfPb_ERYa-vS9o0Bv8wHBOTmzVBLz4q1Pydn_3unhMli8PT4v5MtEpz4fE8nyVF9LKFDJrRCpzLjSH3Kyq1BQVy0xmBLBUQMlA2sLkwvCMy5VmgAKydEquDntjzs8Rw6DqbvQxVFA851xmshRFVLGDSvsuBI9W9T5C8VvFQO2Aq1pF4GoHXB2AR8_NwYPx_S-HXgXtdhSM86gHZTr3j_sXO1CKKQ</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Solán-Fustero, P.</creator><creator>Navas-Montilla, A.</creator><creator>Ferrer, E.</creator><creator>Manzanero, J.</creator><creator>García-Navarro, P.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1519-0444</orcidid></search><sort><creationdate>20210615</creationdate><title>Application of approximate dispersion-diffusion analyses to under-resolved Burgers turbulence using high resolution WENO and UWC schemes</title><author>Solán-Fustero, P. ; Navas-Montilla, A. ; Ferrer, E. ; Manzanero, J. ; García-Navarro, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f25b578f8304fd638526c205dba3d7a14d4d6013609108f7d56d2428bc10e6043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Burgers' turbulence</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Diffusion</topic><topic>Dispersion-diffusion analysis</topic><topic>High-order schemes</topic><topic>Implicit Large Eddy Simulation</topic><topic>Integrators</topic><topic>Numerical dissipation</topic><topic>Runge-Kutta method</topic><topic>Turbulence</topic><topic>Von Neumann</topic><topic>Weighted essentially non-oscillatory WENO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solán-Fustero, P.</creatorcontrib><creatorcontrib>Navas-Montilla, A.</creatorcontrib><creatorcontrib>Ferrer, E.</creatorcontrib><creatorcontrib>Manzanero, J.</creatorcontrib><creatorcontrib>García-Navarro, P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solán-Fustero, P.</au><au>Navas-Montilla, A.</au><au>Ferrer, E.</au><au>Manzanero, J.</au><au>García-Navarro, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of approximate dispersion-diffusion analyses to under-resolved Burgers turbulence using high resolution WENO and UWC schemes</atitle><jtitle>Journal of computational physics</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>435</volume><spage>110246</spage><pages>110246-</pages><artnum>110246</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This paper presents a space-time approximate diffusion-dispersion analysis of high-order, finite volume Upwind Central (UWC) and Weighted Essentially Non-Oscillatory (WENO) schemes. We perform a thorough study of the numerical errors to find a-priori guidelines for the computation of under-resolved turbulent flows. In particular, we study the 3-rd, 5-th and 7-th order UWC and WENO reconstructions in space, and 3-rd and 4-th order Runge-Kutta time integrators. To do so, we use the approximate von Neumann analysis for non-linear schemes introduced by Pirozzoli. Moreover, we apply the “1% rule” for the dispersion-diffusion curves proposed by Moura et al. [41] to determine the range of wavenumbers that are accurately resolved by each scheme. The dispersion-diffusion errors estimated from these analyses agree with the numerical results for the forced Burgers' turbulence problem, which we use as a benchmark. The cut-off wavenumbers defined by the “1% rule” are evidenced to serve as a good estimator of the beginning of the dissipation region of the energy cascade and they are shown to be associated to a similar level of dissipation, with independence of the scheme. Finally, we show that WENO schemes are more diffusive than UWC schemes, leading to stable simulations at the price of more dissipative results. It is concluded both UWC and WENO schemes may be suitable schemes for iLES turbulence modeling, given their numerical dissipation level acting at the appropriate wavenumbers. •A space-time dispersion-diffusion analysis of UWC-RK and WENO-RK is presented.•The “1% rule” determines the wavenumbers that are accurately resolved.•Cut-off wavenumbers are obtained for each scheme and different CFL numbers.•The results are supported by the forced Burgers turbulence problem.•UWC and WENO may be suitable for iLES, being WENO more dissipative than UWC.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110246</doi><orcidid>https://orcid.org/0000-0003-1519-0444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2021-06, Vol.435, p.110246, Article 110246
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2522848967
source ScienceDirect Freedom Collection
subjects Burgers' turbulence
Computational fluid dynamics
Computational physics
Diffusion
Dispersion-diffusion analysis
High-order schemes
Implicit Large Eddy Simulation
Integrators
Numerical dissipation
Runge-Kutta method
Turbulence
Von Neumann
Weighted essentially non-oscillatory WENO
title Application of approximate dispersion-diffusion analyses to under-resolved Burgers turbulence using high resolution WENO and UWC schemes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20approximate%20dispersion-diffusion%20analyses%20to%20under-resolved%20Burgers%20turbulence%20using%20high%20resolution%20WENO%20and%20UWC%20schemes&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Sol%C3%A1n-Fustero,%20P.&rft.date=2021-06-15&rft.volume=435&rft.spage=110246&rft.pages=110246-&rft.artnum=110246&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110246&rft_dat=%3Cproquest_cross%3E2522848967%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-f25b578f8304fd638526c205dba3d7a14d4d6013609108f7d56d2428bc10e6043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522848967&rft_id=info:pmid/&rfr_iscdi=true