Loading…

STDFusionNet: An Infrared and Visible Image Fusion Network Based on Salient Target Detection

In this article, we propose an infrared and visible image fusion network based on the salient target detection, termed STDFusionNet, which can preserve the thermal targets in infrared images and the texture structures in visible images. First, a salient target mask is dedicated to annotating regions...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-13
Main Authors: Ma, Jiayi, Tang, Linfeng, Xu, Meilong, Zhang, Hao, Xiao, Guobao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-474c6610d3b4a2d03e9c4650ee31e8548b01140e9ad365bcabaec5c7349bbc703
cites cdi_FETCH-LOGICAL-c357t-474c6610d3b4a2d03e9c4650ee31e8548b01140e9ad365bcabaec5c7349bbc703
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Ma, Jiayi
Tang, Linfeng
Xu, Meilong
Zhang, Hao
Xiao, Guobao
description In this article, we propose an infrared and visible image fusion network based on the salient target detection, termed STDFusionNet, which can preserve the thermal targets in infrared images and the texture structures in visible images. First, a salient target mask is dedicated to annotating regions of the infrared image that humans or machines pay more attention to, so as to provide spatial guidance for the integration of different information. Second, we combine this salient target mask to design a specific loss function to guide the extraction and reconstruction of features. Specifically, the feature extraction network can selectively extract salient target features from infrared images and background texture features from visible images, while the feature reconstruction network can effectively fuse these features and reconstruct the desired results. It is worth noting that the salient target mask is only required in the training phase, which enables the proposed STDFusionNet to be an end-to-end model. In other words, our STDFusionNet can fulfill salient target detection and key information fusion in an implicit manner. Extensive qualitative and quantitative experiments demonstrate the superiority of our fusion algorithm over the current state of the arts, where our algorithm is much faster and the fusion results look like high-quality visible images with clear highlighted infrared targets. Moreover, the experimental results on the public datasets reveal that our algorithm can improve the entropy (EN), mutual information (MI), visual information fidelity (VIF), and spatial frequency (SF) metrics with about 1.25%, 22.65%, 4.3%, and 0.89% gains, respectively. Our code is publicly available at https://github.com/jiayi-ma/STDFusionNet .
doi_str_mv 10.1109/TIM.2021.3075747
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522908217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416507</ieee_id><sourcerecordid>2522908217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-474c6610d3b4a2d03e9c4650ee31e8548b01140e9ad365bcabaec5c7349bbc703</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mz2a_EW22tBqoeGj0JYbOZltQ2qbsp4r93S4qngeF53xkeQq4ZjBiD9C7PXkYxxGzEQUst9AkZMCl1lCoVn5IBAEuiVEh1Ti68XwOAVkIPyOcin872vm6bV-zu6bihWbN0xmFFTVPRj9rX5QZptjUrpD1IA_nTui_6YHzAwmJhNjU2Hc2NW2FHp9ih7QJ5Sc6WZuPx6jiH5H32mE-eo_nbUzYZzyPLpe4ioYVVikHFS2HiCjimVigJiJxhIkVSAmMCMDUVV7K0pjRopdVcpGVpNfAhue17d6793qPvinW7d004WcQyjlNIYqYDBT1lXeu9w2Wxc_XWuN-CQXFwWASHxcFhcXQYIjd9pEbEfzwVLHyn-R_TiWwb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522908217</pqid></control><display><type>article</type><title>STDFusionNet: An Infrared and Visible Image Fusion Network Based on Salient Target Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ma, Jiayi ; Tang, Linfeng ; Xu, Meilong ; Zhang, Hao ; Xiao, Guobao</creator><creatorcontrib>Ma, Jiayi ; Tang, Linfeng ; Xu, Meilong ; Zhang, Hao ; Xiao, Guobao</creatorcontrib><description>In this article, we propose an infrared and visible image fusion network based on the salient target detection, termed STDFusionNet, which can preserve the thermal targets in infrared images and the texture structures in visible images. First, a salient target mask is dedicated to annotating regions of the infrared image that humans or machines pay more attention to, so as to provide spatial guidance for the integration of different information. Second, we combine this salient target mask to design a specific loss function to guide the extraction and reconstruction of features. Specifically, the feature extraction network can selectively extract salient target features from infrared images and background texture features from visible images, while the feature reconstruction network can effectively fuse these features and reconstruct the desired results. It is worth noting that the salient target mask is only required in the training phase, which enables the proposed STDFusionNet to be an end-to-end model. In other words, our STDFusionNet can fulfill salient target detection and key information fusion in an implicit manner. Extensive qualitative and quantitative experiments demonstrate the superiority of our fusion algorithm over the current state of the arts, where our algorithm is much faster and the fusion results look like high-quality visible images with clear highlighted infrared targets. Moreover, the experimental results on the public datasets reveal that our algorithm can improve the entropy (EN), mutual information (MI), visual information fidelity (VIF), and spatial frequency (SF) metrics with about 1.25%, 22.65%, 4.3%, and 0.89% gains, respectively. Our code is publicly available at https://github.com/jiayi-ma/STDFusionNet .</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3075747</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer vision ; Data integration ; Data mining ; Deep learning ; Feature extraction ; Generative adversarial networks ; Image fusion ; Image processing ; Image quality ; Image reconstruction ; infrared image ; Infrared imagery ; mask ; Object detection ; salient target detection ; Target detection ; Target masking ; Target recognition ; Texture ; Transforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-474c6610d3b4a2d03e9c4650ee31e8548b01140e9ad365bcabaec5c7349bbc703</citedby><cites>FETCH-LOGICAL-c357t-474c6610d3b4a2d03e9c4650ee31e8548b01140e9ad365bcabaec5c7349bbc703</cites><orcidid>0000-0001-5467-3428 ; 0000-0003-3264-3265 ; 0000-0002-8566-5743 ; 0000-0001-5401-6305 ; 0000-0003-2928-8100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416507$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Ma, Jiayi</creatorcontrib><creatorcontrib>Tang, Linfeng</creatorcontrib><creatorcontrib>Xu, Meilong</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Xiao, Guobao</creatorcontrib><title>STDFusionNet: An Infrared and Visible Image Fusion Network Based on Salient Target Detection</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In this article, we propose an infrared and visible image fusion network based on the salient target detection, termed STDFusionNet, which can preserve the thermal targets in infrared images and the texture structures in visible images. First, a salient target mask is dedicated to annotating regions of the infrared image that humans or machines pay more attention to, so as to provide spatial guidance for the integration of different information. Second, we combine this salient target mask to design a specific loss function to guide the extraction and reconstruction of features. Specifically, the feature extraction network can selectively extract salient target features from infrared images and background texture features from visible images, while the feature reconstruction network can effectively fuse these features and reconstruct the desired results. It is worth noting that the salient target mask is only required in the training phase, which enables the proposed STDFusionNet to be an end-to-end model. In other words, our STDFusionNet can fulfill salient target detection and key information fusion in an implicit manner. Extensive qualitative and quantitative experiments demonstrate the superiority of our fusion algorithm over the current state of the arts, where our algorithm is much faster and the fusion results look like high-quality visible images with clear highlighted infrared targets. Moreover, the experimental results on the public datasets reveal that our algorithm can improve the entropy (EN), mutual information (MI), visual information fidelity (VIF), and spatial frequency (SF) metrics with about 1.25%, 22.65%, 4.3%, and 0.89% gains, respectively. Our code is publicly available at https://github.com/jiayi-ma/STDFusionNet .</description><subject>Algorithms</subject><subject>Computer vision</subject><subject>Data integration</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Image fusion</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>infrared image</subject><subject>Infrared imagery</subject><subject>mask</subject><subject>Object detection</subject><subject>salient target detection</subject><subject>Target detection</subject><subject>Target masking</subject><subject>Target recognition</subject><subject>Texture</subject><subject>Transforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mz2a_EW22tBqoeGj0JYbOZltQ2qbsp4r93S4qngeF53xkeQq4ZjBiD9C7PXkYxxGzEQUst9AkZMCl1lCoVn5IBAEuiVEh1Ti68XwOAVkIPyOcin872vm6bV-zu6bihWbN0xmFFTVPRj9rX5QZptjUrpD1IA_nTui_6YHzAwmJhNjU2Hc2NW2FHp9ih7QJ5Sc6WZuPx6jiH5H32mE-eo_nbUzYZzyPLpe4ioYVVikHFS2HiCjimVigJiJxhIkVSAmMCMDUVV7K0pjRopdVcpGVpNfAhue17d6793qPvinW7d004WcQyjlNIYqYDBT1lXeu9w2Wxc_XWuN-CQXFwWASHxcFhcXQYIjd9pEbEfzwVLHyn-R_TiWwb</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ma, Jiayi</creator><creator>Tang, Linfeng</creator><creator>Xu, Meilong</creator><creator>Zhang, Hao</creator><creator>Xiao, Guobao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5467-3428</orcidid><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid><orcidid>https://orcid.org/0000-0002-8566-5743</orcidid><orcidid>https://orcid.org/0000-0001-5401-6305</orcidid><orcidid>https://orcid.org/0000-0003-2928-8100</orcidid></search><sort><creationdate>2021</creationdate><title>STDFusionNet: An Infrared and Visible Image Fusion Network Based on Salient Target Detection</title><author>Ma, Jiayi ; Tang, Linfeng ; Xu, Meilong ; Zhang, Hao ; Xiao, Guobao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-474c6610d3b4a2d03e9c4650ee31e8548b01140e9ad365bcabaec5c7349bbc703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer vision</topic><topic>Data integration</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Image fusion</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>infrared image</topic><topic>Infrared imagery</topic><topic>mask</topic><topic>Object detection</topic><topic>salient target detection</topic><topic>Target detection</topic><topic>Target masking</topic><topic>Target recognition</topic><topic>Texture</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jiayi</creatorcontrib><creatorcontrib>Tang, Linfeng</creatorcontrib><creatorcontrib>Xu, Meilong</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Xiao, Guobao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jiayi</au><au>Tang, Linfeng</au><au>Xu, Meilong</au><au>Zhang, Hao</au><au>Xiao, Guobao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STDFusionNet: An Infrared and Visible Image Fusion Network Based on Salient Target Detection</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In this article, we propose an infrared and visible image fusion network based on the salient target detection, termed STDFusionNet, which can preserve the thermal targets in infrared images and the texture structures in visible images. First, a salient target mask is dedicated to annotating regions of the infrared image that humans or machines pay more attention to, so as to provide spatial guidance for the integration of different information. Second, we combine this salient target mask to design a specific loss function to guide the extraction and reconstruction of features. Specifically, the feature extraction network can selectively extract salient target features from infrared images and background texture features from visible images, while the feature reconstruction network can effectively fuse these features and reconstruct the desired results. It is worth noting that the salient target mask is only required in the training phase, which enables the proposed STDFusionNet to be an end-to-end model. In other words, our STDFusionNet can fulfill salient target detection and key information fusion in an implicit manner. Extensive qualitative and quantitative experiments demonstrate the superiority of our fusion algorithm over the current state of the arts, where our algorithm is much faster and the fusion results look like high-quality visible images with clear highlighted infrared targets. Moreover, the experimental results on the public datasets reveal that our algorithm can improve the entropy (EN), mutual information (MI), visual information fidelity (VIF), and spatial frequency (SF) metrics with about 1.25%, 22.65%, 4.3%, and 0.89% gains, respectively. Our code is publicly available at https://github.com/jiayi-ma/STDFusionNet .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3075747</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5467-3428</orcidid><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid><orcidid>https://orcid.org/0000-0002-8566-5743</orcidid><orcidid>https://orcid.org/0000-0001-5401-6305</orcidid><orcidid>https://orcid.org/0000-0003-2928-8100</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-13
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2522908217
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Computer vision
Data integration
Data mining
Deep learning
Feature extraction
Generative adversarial networks
Image fusion
Image processing
Image quality
Image reconstruction
infrared image
Infrared imagery
mask
Object detection
salient target detection
Target detection
Target masking
Target recognition
Texture
Transforms
title STDFusionNet: An Infrared and Visible Image Fusion Network Based on Salient Target Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STDFusionNet:%20An%20Infrared%20and%20Visible%20Image%20Fusion%20Network%20Based%20on%20Salient%20Target%20Detection&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Ma,%20Jiayi&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3075747&rft_dat=%3Cproquest_cross%3E2522908217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-474c6610d3b4a2d03e9c4650ee31e8548b01140e9ad365bcabaec5c7349bbc703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522908217&rft_id=info:pmid/&rft_ieee_id=9416507&rfr_iscdi=true