Loading…

An Ultrahigh-Q Microresonator on 4H-silicon-carbide-on-insulator Platform for Multiple Harmonics, Cascaded Raman Lasing and Kerr Comb Generations

The realization of ultrahigh quality (Q) resonators regardless of the underpinning material platforms has been a ceaseless pursuit, because the high Q resonators provide an extreme environment of storage of light to enable observations of many unconventional nonlinear optical phenomenon with high ef...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-05
Main Authors: Wang, Chengli, Fang, Zhiwei, Ailun Yi, Yang, Bingcheng, Wang, Zhe, Zhou, Liping, Chen, Shen, Zhu, Yifan, Zhou, Yuan, Bao, Rui, Li, Zhongxu, Chen, Yang, Huang, Kai, Zhang, Jiaxiang, Cheng, Ya, Ou, Xin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The realization of ultrahigh quality (Q) resonators regardless of the underpinning material platforms has been a ceaseless pursuit, because the high Q resonators provide an extreme environment of storage of light to enable observations of many unconventional nonlinear optical phenomenon with high efficiencies. Here, we demonstrate an ultra-high Q factor (7.1*10^6) microresonator on the 4H-silicon-carbide-on-insulator (4H-SiCOI) platform in which both \c{hi}^(2) and \c{hi}^(3) nonlinear processes of high efficiencies have been generated. Broadband frequency conversions, including second-, third-, fourth-harmonic generation were observed. Cascaded Raman lasing was demonstrated in the SiC microresonator for the first time to the best of our knowledge. Broadband Kerr frequency combs covering from 1300 to 1700 nm were achieved using a dispersion-engineered SiC microresonator. Our demonstration is a significant milestone in the development of SiC photonic integrated devices.
ISSN:2331-8422