Loading…

Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material

•XIGA is utilized first time for the analysis of cracked FGMEE materials.•Generalized IFs are evaluated by combining XIGA with the interaction integral.•Asymptotic crack-tip fields of homogeneous MEE material are used in the interaction integral.•Effect of various parameters on the generalized IFs i...

Full description

Saved in:
Bibliographic Details
Published in:Engineering fracture mechanics 2021-04, Vol.247, p.107640, Article 107640
Main Authors: Singh, S.K., Singh, I.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-5efa20fad71fb5b6c2e2278ddae70755619cb801ac5da42647b062f473ba58c73
cites cdi_FETCH-LOGICAL-c349t-5efa20fad71fb5b6c2e2278ddae70755619cb801ac5da42647b062f473ba58c73
container_end_page
container_issue
container_start_page 107640
container_title Engineering fracture mechanics
container_volume 247
creator Singh, S.K.
Singh, I.V.
description •XIGA is utilized first time for the analysis of cracked FGMEE materials.•Generalized IFs are evaluated by combining XIGA with the interaction integral.•Asymptotic crack-tip fields of homogeneous MEE material are used in the interaction integral.•Effect of various parameters on the generalized IFs is investigated and discussed. In this work, we present an extended isogeometric analysis (XIGA) for cracked functionally graded magneto-electro-elastic (FGMEE) material. The material properties inside the FGMEE domain vary exponentially. An electrically and magnetically impermeable crack in the FGMEE domain is modeled by adding appropriate enrichment functions into the isogeometric analysis (IGA) approximation. Heaviside function is utilized to model the displacement, electric, and magnetic potential along the crack face. In contrast, conventional four-field crack tip enrichment functions are used to mimic the crack tip singularity characteristics. The generalized intensity factors (IFs), i.e., the stress intensity factors (SIFs), electric displacement intensity factor (EDIF) and magnetic induction intensity factor (MIIF), are assessed using magneto-electro-mechanical interaction integral. A series of numerical studies over the cracked homogeneous and FGMEE material are presented. The accuracy of XIGA is examined by comparing the obtained results with the reference solutions. Various parameters such as volume fraction, crack length, loading combination parameter (both electrical and magnetic), material non-homogeneity parameter and crack orientation are taken to examine their effects on the generalized IFs.
doi_str_mv 10.1016/j.engfracmech.2021.107640
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2523164354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794421001041</els_id><sourcerecordid>2523164354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5efa20fad71fb5b6c2e2278ddae70755619cb801ac5da42647b062f473ba58c73</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIlMI_BHFOsR07To-oKg-pEhc4W46zDo6SuNgOon-Po3DgyGlWuzOjnUHoluANwaS87zYwtsYrPYD-2FBMSdqLkuEztCKVKHJREH6OVhiTNG8Zu0RXIXQYJ1KFV0jvvyOMDTSZDa4FN0D0VmdqVP0p2JAZ57PZPk4eMjtmZhp1tC6d-1PWejUrB9WOEF0OPejoZ1QhJpNBRfBW9dfowqg-wM0vrtH74_5t95wfXp9edg-HXBdsG3MORlFsVCOIqXldagqUiqppFAgsOC_JVtcVJkrzRjFaMlHjkhomilrxSotije4W36N3nxOEKDs3-fRqkJTTgpSs4CyxtgtLexeCByOP3g7KnyTBcu5UdvJPp3LuVC6dJu1u0UKK8WXBy6AtjBoa61N22Tj7D5cfSamHxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523164354</pqid></control><display><type>article</type><title>Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material</title><source>ScienceDirect Journals</source><creator>Singh, S.K. ; Singh, I.V.</creator><creatorcontrib>Singh, S.K. ; Singh, I.V.</creatorcontrib><description>•XIGA is utilized first time for the analysis of cracked FGMEE materials.•Generalized IFs are evaluated by combining XIGA with the interaction integral.•Asymptotic crack-tip fields of homogeneous MEE material are used in the interaction integral.•Effect of various parameters on the generalized IFs is investigated and discussed. In this work, we present an extended isogeometric analysis (XIGA) for cracked functionally graded magneto-electro-elastic (FGMEE) material. The material properties inside the FGMEE domain vary exponentially. An electrically and magnetically impermeable crack in the FGMEE domain is modeled by adding appropriate enrichment functions into the isogeometric analysis (IGA) approximation. Heaviside function is utilized to model the displacement, electric, and magnetic potential along the crack face. In contrast, conventional four-field crack tip enrichment functions are used to mimic the crack tip singularity characteristics. The generalized intensity factors (IFs), i.e., the stress intensity factors (SIFs), electric displacement intensity factor (EDIF) and magnetic induction intensity factor (MIIF), are assessed using magneto-electro-mechanical interaction integral. A series of numerical studies over the cracked homogeneous and FGMEE material are presented. The accuracy of XIGA is examined by comparing the obtained results with the reference solutions. Various parameters such as volume fraction, crack length, loading combination parameter (both electrical and magnetic), material non-homogeneity parameter and crack orientation are taken to examine their effects on the generalized IFs.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2021.107640</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Crack tips ; Domains ; Electric displacement intensity factor ; Functionally graded magneto-electro-elastic material ; Functionally gradient materials ; Homogeneity ; Magnetic induction ; Magnetic induction intensity factor ; Magnetic properties ; Magneto-electro-elastic material ; Material properties ; Mathematical models ; NURBS ; Parameters ; Stress intensity factor ; Stress intensity factors ; XIGA</subject><ispartof>Engineering fracture mechanics, 2021-04, Vol.247, p.107640, Article 107640</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5efa20fad71fb5b6c2e2278ddae70755619cb801ac5da42647b062f473ba58c73</citedby><cites>FETCH-LOGICAL-c349t-5efa20fad71fb5b6c2e2278ddae70755619cb801ac5da42647b062f473ba58c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, S.K.</creatorcontrib><creatorcontrib>Singh, I.V.</creatorcontrib><title>Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material</title><title>Engineering fracture mechanics</title><description>•XIGA is utilized first time for the analysis of cracked FGMEE materials.•Generalized IFs are evaluated by combining XIGA with the interaction integral.•Asymptotic crack-tip fields of homogeneous MEE material are used in the interaction integral.•Effect of various parameters on the generalized IFs is investigated and discussed. In this work, we present an extended isogeometric analysis (XIGA) for cracked functionally graded magneto-electro-elastic (FGMEE) material. The material properties inside the FGMEE domain vary exponentially. An electrically and magnetically impermeable crack in the FGMEE domain is modeled by adding appropriate enrichment functions into the isogeometric analysis (IGA) approximation. Heaviside function is utilized to model the displacement, electric, and magnetic potential along the crack face. In contrast, conventional four-field crack tip enrichment functions are used to mimic the crack tip singularity characteristics. The generalized intensity factors (IFs), i.e., the stress intensity factors (SIFs), electric displacement intensity factor (EDIF) and magnetic induction intensity factor (MIIF), are assessed using magneto-electro-mechanical interaction integral. A series of numerical studies over the cracked homogeneous and FGMEE material are presented. The accuracy of XIGA is examined by comparing the obtained results with the reference solutions. Various parameters such as volume fraction, crack length, loading combination parameter (both electrical and magnetic), material non-homogeneity parameter and crack orientation are taken to examine their effects on the generalized IFs.</description><subject>Crack tips</subject><subject>Domains</subject><subject>Electric displacement intensity factor</subject><subject>Functionally graded magneto-electro-elastic material</subject><subject>Functionally gradient materials</subject><subject>Homogeneity</subject><subject>Magnetic induction</subject><subject>Magnetic induction intensity factor</subject><subject>Magnetic properties</subject><subject>Magneto-electro-elastic material</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>NURBS</subject><subject>Parameters</subject><subject>Stress intensity factor</subject><subject>Stress intensity factors</subject><subject>XIGA</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOwzAQtBBIlMI_BHFOsR07To-oKg-pEhc4W46zDo6SuNgOon-Po3DgyGlWuzOjnUHoluANwaS87zYwtsYrPYD-2FBMSdqLkuEztCKVKHJREH6OVhiTNG8Zu0RXIXQYJ1KFV0jvvyOMDTSZDa4FN0D0VmdqVP0p2JAZ57PZPk4eMjtmZhp1tC6d-1PWejUrB9WOEF0OPejoZ1QhJpNBRfBW9dfowqg-wM0vrtH74_5t95wfXp9edg-HXBdsG3MORlFsVCOIqXldagqUiqppFAgsOC_JVtcVJkrzRjFaMlHjkhomilrxSotije4W36N3nxOEKDs3-fRqkJTTgpSs4CyxtgtLexeCByOP3g7KnyTBcu5UdvJPp3LuVC6dJu1u0UKK8WXBy6AtjBoa61N22Tj7D5cfSamHxw</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Singh, S.K.</creator><creator>Singh, I.V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20210415</creationdate><title>Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material</title><author>Singh, S.K. ; Singh, I.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5efa20fad71fb5b6c2e2278ddae70755619cb801ac5da42647b062f473ba58c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crack tips</topic><topic>Domains</topic><topic>Electric displacement intensity factor</topic><topic>Functionally graded magneto-electro-elastic material</topic><topic>Functionally gradient materials</topic><topic>Homogeneity</topic><topic>Magnetic induction</topic><topic>Magnetic induction intensity factor</topic><topic>Magnetic properties</topic><topic>Magneto-electro-elastic material</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>NURBS</topic><topic>Parameters</topic><topic>Stress intensity factor</topic><topic>Stress intensity factors</topic><topic>XIGA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, S.K.</creatorcontrib><creatorcontrib>Singh, I.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, S.K.</au><au>Singh, I.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>247</volume><spage>107640</spage><pages>107640-</pages><artnum>107640</artnum><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•XIGA is utilized first time for the analysis of cracked FGMEE materials.•Generalized IFs are evaluated by combining XIGA with the interaction integral.•Asymptotic crack-tip fields of homogeneous MEE material are used in the interaction integral.•Effect of various parameters on the generalized IFs is investigated and discussed. In this work, we present an extended isogeometric analysis (XIGA) for cracked functionally graded magneto-electro-elastic (FGMEE) material. The material properties inside the FGMEE domain vary exponentially. An electrically and magnetically impermeable crack in the FGMEE domain is modeled by adding appropriate enrichment functions into the isogeometric analysis (IGA) approximation. Heaviside function is utilized to model the displacement, electric, and magnetic potential along the crack face. In contrast, conventional four-field crack tip enrichment functions are used to mimic the crack tip singularity characteristics. The generalized intensity factors (IFs), i.e., the stress intensity factors (SIFs), electric displacement intensity factor (EDIF) and magnetic induction intensity factor (MIIF), are assessed using magneto-electro-mechanical interaction integral. A series of numerical studies over the cracked homogeneous and FGMEE material are presented. The accuracy of XIGA is examined by comparing the obtained results with the reference solutions. Various parameters such as volume fraction, crack length, loading combination parameter (both electrical and magnetic), material non-homogeneity parameter and crack orientation are taken to examine their effects on the generalized IFs.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2021.107640</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2021-04, Vol.247, p.107640, Article 107640
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_2523164354
source ScienceDirect Journals
subjects Crack tips
Domains
Electric displacement intensity factor
Functionally graded magneto-electro-elastic material
Functionally gradient materials
Homogeneity
Magnetic induction
Magnetic induction intensity factor
Magnetic properties
Magneto-electro-elastic material
Material properties
Mathematical models
NURBS
Parameters
Stress intensity factor
Stress intensity factors
XIGA
title Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20isogeometric%20analysis%20for%20fracture%20in%20functionally%20graded%20magneto-electro-elastic%20material&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Singh,%20S.K.&rft.date=2021-04-15&rft.volume=247&rft.spage=107640&rft.pages=107640-&rft.artnum=107640&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2021.107640&rft_dat=%3Cproquest_cross%3E2523164354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-5efa20fad71fb5b6c2e2278ddae70755619cb801ac5da42647b062f473ba58c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2523164354&rft_id=info:pmid/&rfr_iscdi=true