Loading…
Image reconstruction with the chaotic fiber laser in scattering media
The reconstruction of the size, position, optical properties, and structure of the object in scattering media was realized with a chaotic fiber laser. The light from the chaotic fiber laser was split into two parts. One part was used as the detection signal to detect the object, and the other was us...
Saved in:
Published in: | Applied optics (2004) 2021-05, Vol.60 (13), p.4004 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reconstruction of the size, position, optical properties, and structure of the object in scattering media was realized with a chaotic fiber laser. The light from the chaotic fiber laser was split into two parts. One part was used as the detection signal to detect the object, and the other was used as the reference signal; then, the two signals were cross correlated. The attenuation of light in scattering media was attributed to scattering and absorption. The theoretical model of the peak value of cross correlation of the chaotic signals as projection data were established by the attenuation law, and the filtered back-projection algorithms were used to realize the image reconstruction. The mean squared error, the normalized mean squared error, the peak signal-to-noise ratio, and the structural similarity index of the reconstructed image were analyzed. The results show that the high resolution of the reconstructed image benefits from the high signal-to-noise ratio with the chaotic fiber laser based on a delta-like cross-correlation function. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.420441 |