Loading…
New effective precession spin for modeling multimodal gravitational waveforms in the strong-field regime
Accurately modeling the complete gravitational-wave signal from precessing binary black holes through the late inspiral, merger, and ringdown remains a challenging problem. The lack of analytic solutions for the precession dynamics of generic double-spin systems, and the high dimensionality of the p...
Saved in:
Published in: | Physical review. D 2021-04, Vol.103 (8), p.1, Article 083022 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-cdb23c6752f0b42be976e457c2e8d016a294c883ce399423fa45ecc1c298c9263 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-cdb23c6752f0b42be976e457c2e8d016a294c883ce399423fa45ecc1c298c9263 |
container_end_page | |
container_issue | 8 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 103 |
creator | Thomas, Lucy M. Schmidt, Patricia Pratten, Geraint |
description | Accurately modeling the complete gravitational-wave signal from precessing binary black holes through the late inspiral, merger, and ringdown remains a challenging problem. The lack of analytic solutions for the precession dynamics of generic double-spin systems, and the high dimensionality of the problem, obfuscate the incorporation of strong-field spin-precession information into semianalytic waveform models used in gravitational-wave data analysis. Previously, an effective precession spin χp was introduced to reduce the number of spin degrees of freedom. Here, we show that χp alone does not accurately reproduce higher-order multipolar modes, in particular the ones that carry strong imprints due to precession such as the (2,1)-mode. To improve the higher-mode content, and in particular to facilitate an accurate incorporation of precession effects in the strong-field regime into waveform models, we introduce a new dimensional reduction through an effective precession spin vector, →χ, which takes into account precessing spin information from both black holes. We show that this adapted effective precession spin (i) mimics the precession dynamics of the fully precessing configuration remarkably well, (ii) captures the signature features of precession in higher-order modes, and (iii) reproduces the final state of the remnant black hole with high accuracy for the overwhelming majority of configurations. We demonstrate the efficacy of this two-dimensional precession spin in the strong-field regime, paving the path for meaningful calibration of the precessing sector of semianalytic waveform models with a faithful representation of higher-order modes through merger and the remnant black hole spin. |
doi_str_mv | 10.1103/PhysRevD.103.083022 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2524950902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524950902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-cdb23c6752f0b42be976e457c2e8d016a294c883ce399423fa45ecc1c298c9263</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWGqfwJuA11uTyZ5yKfUIRUX0ekmzk23KnkzSlr69KVWv5v_gm2H4CbnmbM45E7fv64P_wN39PMKclYIBnJEJpAVLGAN5_p85uyQz7zcsxpzJgvMJWb_inqIxqIPdIR0davTeDj31o-2pGRzthhpb2ze027bBRlItbZza2aBCFCPt1Q6j2XkaV8IaqQ9u6JvEWGxr6rCxHV6RC6Naj7PfOSVfjw-fi-dk-fb0srhbJloUEBJdr0DovMjAsFUKK5RFjmlWaMCyjm8rkKkuS6FRSJmCMCrNUGuuQZZaQi6m5OZ0d3TD9xZ9qDbD1sUvfQUZpDJjkkG0xMnSbvDeoalGZzvlDhVn1bHV6q_V6ginVsUPHjht7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524950902</pqid></control><display><type>article</type><title>New effective precession spin for modeling multimodal gravitational waveforms in the strong-field regime</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Thomas, Lucy M. ; Schmidt, Patricia ; Pratten, Geraint</creator><creatorcontrib>Thomas, Lucy M. ; Schmidt, Patricia ; Pratten, Geraint</creatorcontrib><description>Accurately modeling the complete gravitational-wave signal from precessing binary black holes through the late inspiral, merger, and ringdown remains a challenging problem. The lack of analytic solutions for the precession dynamics of generic double-spin systems, and the high dimensionality of the problem, obfuscate the incorporation of strong-field spin-precession information into semianalytic waveform models used in gravitational-wave data analysis. Previously, an effective precession spin χp was introduced to reduce the number of spin degrees of freedom. Here, we show that χp alone does not accurately reproduce higher-order multipolar modes, in particular the ones that carry strong imprints due to precession such as the (2,1)-mode. To improve the higher-mode content, and in particular to facilitate an accurate incorporation of precession effects in the strong-field regime into waveform models, we introduce a new dimensional reduction through an effective precession spin vector, →χ, which takes into account precessing spin information from both black holes. We show that this adapted effective precession spin (i) mimics the precession dynamics of the fully precessing configuration remarkably well, (ii) captures the signature features of precession in higher-order modes, and (iii) reproduces the final state of the remnant black hole with high accuracy for the overwhelming majority of configurations. We demonstrate the efficacy of this two-dimensional precession spin in the strong-field regime, paving the path for meaningful calibration of the precessing sector of semianalytic waveform models with a faithful representation of higher-order modes through merger and the remnant black hole spin.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.083022</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Configurations ; Data analysis ; Exact solutions ; Gravitational waves ; Modelling ; Precession ; Spin dynamics ; Waveforms</subject><ispartof>Physical review. D, 2021-04, Vol.103 (8), p.1, Article 083022</ispartof><rights>Copyright American Physical Society Apr 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-cdb23c6752f0b42be976e457c2e8d016a294c883ce399423fa45ecc1c298c9263</citedby><cites>FETCH-LOGICAL-c372t-cdb23c6752f0b42be976e457c2e8d016a294c883ce399423fa45ecc1c298c9263</cites><orcidid>0000-0003-3271-6436 ; 0000-0003-1542-1791 ; 0000-0003-4984-0775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Thomas, Lucy M.</creatorcontrib><creatorcontrib>Schmidt, Patricia</creatorcontrib><creatorcontrib>Pratten, Geraint</creatorcontrib><title>New effective precession spin for modeling multimodal gravitational waveforms in the strong-field regime</title><title>Physical review. D</title><description>Accurately modeling the complete gravitational-wave signal from precessing binary black holes through the late inspiral, merger, and ringdown remains a challenging problem. The lack of analytic solutions for the precession dynamics of generic double-spin systems, and the high dimensionality of the problem, obfuscate the incorporation of strong-field spin-precession information into semianalytic waveform models used in gravitational-wave data analysis. Previously, an effective precession spin χp was introduced to reduce the number of spin degrees of freedom. Here, we show that χp alone does not accurately reproduce higher-order multipolar modes, in particular the ones that carry strong imprints due to precession such as the (2,1)-mode. To improve the higher-mode content, and in particular to facilitate an accurate incorporation of precession effects in the strong-field regime into waveform models, we introduce a new dimensional reduction through an effective precession spin vector, →χ, which takes into account precessing spin information from both black holes. We show that this adapted effective precession spin (i) mimics the precession dynamics of the fully precessing configuration remarkably well, (ii) captures the signature features of precession in higher-order modes, and (iii) reproduces the final state of the remnant black hole with high accuracy for the overwhelming majority of configurations. We demonstrate the efficacy of this two-dimensional precession spin in the strong-field regime, paving the path for meaningful calibration of the precessing sector of semianalytic waveform models with a faithful representation of higher-order modes through merger and the remnant black hole spin.</description><subject>Configurations</subject><subject>Data analysis</subject><subject>Exact solutions</subject><subject>Gravitational waves</subject><subject>Modelling</subject><subject>Precession</subject><subject>Spin dynamics</subject><subject>Waveforms</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKAzEQhoMoWGqfwJuA11uTyZ5yKfUIRUX0ekmzk23KnkzSlr69KVWv5v_gm2H4CbnmbM45E7fv64P_wN39PMKclYIBnJEJpAVLGAN5_p85uyQz7zcsxpzJgvMJWb_inqIxqIPdIR0davTeDj31o-2pGRzthhpb2ze027bBRlItbZza2aBCFCPt1Q6j2XkaV8IaqQ9u6JvEWGxr6rCxHV6RC6Naj7PfOSVfjw-fi-dk-fb0srhbJloUEBJdr0DovMjAsFUKK5RFjmlWaMCyjm8rkKkuS6FRSJmCMCrNUGuuQZZaQi6m5OZ0d3TD9xZ9qDbD1sUvfQUZpDJjkkG0xMnSbvDeoalGZzvlDhVn1bHV6q_V6ginVsUPHjht7Q</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Thomas, Lucy M.</creator><creator>Schmidt, Patricia</creator><creator>Pratten, Geraint</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3271-6436</orcidid><orcidid>https://orcid.org/0000-0003-1542-1791</orcidid><orcidid>https://orcid.org/0000-0003-4984-0775</orcidid></search><sort><creationdate>20210426</creationdate><title>New effective precession spin for modeling multimodal gravitational waveforms in the strong-field regime</title><author>Thomas, Lucy M. ; Schmidt, Patricia ; Pratten, Geraint</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-cdb23c6752f0b42be976e457c2e8d016a294c883ce399423fa45ecc1c298c9263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Configurations</topic><topic>Data analysis</topic><topic>Exact solutions</topic><topic>Gravitational waves</topic><topic>Modelling</topic><topic>Precession</topic><topic>Spin dynamics</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Lucy M.</creatorcontrib><creatorcontrib>Schmidt, Patricia</creatorcontrib><creatorcontrib>Pratten, Geraint</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Lucy M.</au><au>Schmidt, Patricia</au><au>Pratten, Geraint</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New effective precession spin for modeling multimodal gravitational waveforms in the strong-field regime</atitle><jtitle>Physical review. D</jtitle><date>2021-04-26</date><risdate>2021</risdate><volume>103</volume><issue>8</issue><spage>1</spage><pages>1-</pages><artnum>083022</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Accurately modeling the complete gravitational-wave signal from precessing binary black holes through the late inspiral, merger, and ringdown remains a challenging problem. The lack of analytic solutions for the precession dynamics of generic double-spin systems, and the high dimensionality of the problem, obfuscate the incorporation of strong-field spin-precession information into semianalytic waveform models used in gravitational-wave data analysis. Previously, an effective precession spin χp was introduced to reduce the number of spin degrees of freedom. Here, we show that χp alone does not accurately reproduce higher-order multipolar modes, in particular the ones that carry strong imprints due to precession such as the (2,1)-mode. To improve the higher-mode content, and in particular to facilitate an accurate incorporation of precession effects in the strong-field regime into waveform models, we introduce a new dimensional reduction through an effective precession spin vector, →χ, which takes into account precessing spin information from both black holes. We show that this adapted effective precession spin (i) mimics the precession dynamics of the fully precessing configuration remarkably well, (ii) captures the signature features of precession in higher-order modes, and (iii) reproduces the final state of the remnant black hole with high accuracy for the overwhelming majority of configurations. We demonstrate the efficacy of this two-dimensional precession spin in the strong-field regime, paving the path for meaningful calibration of the precessing sector of semianalytic waveform models with a faithful representation of higher-order modes through merger and the remnant black hole spin.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.083022</doi><orcidid>https://orcid.org/0000-0003-3271-6436</orcidid><orcidid>https://orcid.org/0000-0003-1542-1791</orcidid><orcidid>https://orcid.org/0000-0003-4984-0775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-04, Vol.103 (8), p.1, Article 083022 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2524950902 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Configurations Data analysis Exact solutions Gravitational waves Modelling Precession Spin dynamics Waveforms |
title | New effective precession spin for modeling multimodal gravitational waveforms in the strong-field regime |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20effective%20precession%20spin%20for%20modeling%20multimodal%20gravitational%20waveforms%20in%20the%20strong-field%20regime&rft.jtitle=Physical%20review.%20D&rft.au=Thomas,%20Lucy%20M.&rft.date=2021-04-26&rft.volume=103&rft.issue=8&rft.spage=1&rft.pages=1-&rft.artnum=083022&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.083022&rft_dat=%3Cproquest_cross%3E2524950902%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-cdb23c6752f0b42be976e457c2e8d016a294c883ce399423fa45ecc1c298c9263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2524950902&rft_id=info:pmid/&rfr_iscdi=true |