Loading…

The Production of Biogenic Silica from Different South African Agricultural Residues through a Thermo-Chemical Treatment Method

A thermo-chemical treatment method was used to produce biogenic amorphous silica from South African sugarcane and maize residues. Different fractions of South African sugarcane (leaves, pith, and fiber) were processed for silica production. The biomass samples were leached with either 7 wt% citric a...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2021-01, Vol.13 (2), p.577
Main Authors: Maseko, Ncamisile Nondumiso, Schneider, Denise, Wassersleben, Susan, Enke, Dirk, Iwarere, Samuel Ayodele, Pocock, Jonathan, Stark, Annegret
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A thermo-chemical treatment method was used to produce biogenic amorphous silica from South African sugarcane and maize residues. Different fractions of South African sugarcane (leaves, pith, and fiber) were processed for silica production. The biomass samples were leached with either 7 wt% citric acid or 7 wt% sulfuric acid at 353 K for 2 h prior to being rinsed, dried and combusted using a four-step program ranging from room temperature to 873 K in a furnace. The characterization of the pre-treated biomass samples was conducted using thermogravimetric analysis (TG/DTA), X-ray fluorescence analysis (XRF) and elemental analysis (CHN), while the final products were characterized by XRF, X-ray diffraction (XRD), elemental analysis, nitrogen physisorption and scanning electron microscopy (SEM). Citric acid pre-treatment proved to be an attractive alternative to mineral acids. Amorphous biogenic silica was produced from sugarcane leaves in good quality (0.1 wt% residual carbon and up to 99.3 wt% silica content). The produced biogenic silica also had great textural properties such as a surface area of up to 323 m2 g−1, average pore diameter of 5.0 nm, and a pore volume of 0.41 cm3 g−1.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13020577