Loading…
Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures
Summary The ray‐tracing algorithm is very costly regarding time complexity and while many techniques have been conceived over the years with the purpose of accelerating its execution, one stands out: parallelism exploitation of ray‐triangle intersection operations. In this sense, field‐programmable...
Saved in:
Published in: | Concurrency and computation 2021-06, Vol.33 (11), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2542-5d126605a1ae19daecafd6375a28f1831271527d297a520705fc58535c4e14413 |
container_end_page | n/a |
container_issue | 11 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 33 |
creator | Sampaio, Adrianno A. Sena, Alexandre C. Nery, Alexandre S. |
description | Summary
The ray‐tracing algorithm is very costly regarding time complexity and while many techniques have been conceived over the years with the purpose of accelerating its execution, one stands out: parallelism exploitation of ray‐triangle intersection operations. In this sense, field‐programmable gate arrays (FPGAs) have plenty resources to run specialized accelerators that execute multiple operations in parallel. Moreover, modern FPGAs are embedded with multiprocessor systems‐on‐chip based on ARM architecture, which can be used simultaneously with the FPGA programmable logic to further accelerate the application execution. In this work, we present and analyze a reconfigurable accelerator for ray‐tracing specialized in computing ray‐triangle intersections at the network edge of a heterogeneous cloud computing environment. The accelerator is specified using Xilinx high‐level synthesis and is implemented in a Xilinx Zynq FPGA (XC7Z020‐1CLG400C). We also present an execution model which enables the exploitation of the available computing elements of the heterogeneous system: ARM Cortex‐A53, FPGA programmable logic, and cloud machines. Experimental performance and synthesis results show that the heterogeneous system can efficiently render a simplified version of the Stanford Bunny model when using the hardware accelerator with up to six instances of a ray‐triangle intersection unit together with the other computing resources. |
doi_str_mv | 10.1002/cpe.5822 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525080513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525080513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2542-5d126605a1ae19daecafd6375a28f1831271527d297a520705fc58535c4e14413</originalsourceid><addsrcrecordid>eNp10M9Kw0AQBvBFFKxV8BECXryk3ZnNJOlRSv0DFT3oeVk3kzYlZutugvTmI_iMPomJFW-eZmB-fAOfEOcgJyAlTu2WJ5QjHogRkMJYpio5_NsxPRYnIWykBJAKRuJ-0ZiXumpW0Zpb9m7FDbsuRN7svj4-W2_scDPWcs3etJVroqqJuFjx1NauKyLj7bpq2bad53AqjkpTBz77nWPxfL14mt_Gy4ebu_nVMrZICcZUAKapJAOGYVYYtqYsUpWRwbyEXAFmQJgVOMsMocwklZZyUmQThiQBNRYX-9ytd28dh1ZvXOeb_qVGQpK5JFC9utwr610Inku99dWr8TsNUg9l6b4sPZTV03hP36uad_86PX9c_PhvShVq0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525080513</pqid></control><display><type>article</type><title>Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Sampaio, Adrianno A. ; Sena, Alexandre C. ; Nery, Alexandre S.</creator><creatorcontrib>Sampaio, Adrianno A. ; Sena, Alexandre C. ; Nery, Alexandre S.</creatorcontrib><description>Summary
The ray‐tracing algorithm is very costly regarding time complexity and while many techniques have been conceived over the years with the purpose of accelerating its execution, one stands out: parallelism exploitation of ray‐triangle intersection operations. In this sense, field‐programmable gate arrays (FPGAs) have plenty resources to run specialized accelerators that execute multiple operations in parallel. Moreover, modern FPGAs are embedded with multiprocessor systems‐on‐chip based on ARM architecture, which can be used simultaneously with the FPGA programmable logic to further accelerate the application execution. In this work, we present and analyze a reconfigurable accelerator for ray‐tracing specialized in computing ray‐triangle intersections at the network edge of a heterogeneous cloud computing environment. The accelerator is specified using Xilinx high‐level synthesis and is implemented in a Xilinx Zynq FPGA (XC7Z020‐1CLG400C). We also present an execution model which enables the exploitation of the available computing elements of the heterogeneous system: ARM Cortex‐A53, FPGA programmable logic, and cloud machines. Experimental performance and synthesis results show that the heterogeneous system can efficiently render a simplified version of the Stanford Bunny model when using the hardware accelerator with up to six instances of a ray‐triangle intersection unit together with the other computing resources.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5822</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accelerators ; Algorithms ; ARM ; Cloud computing ; Computer architecture ; edge/cloud computing ; Exploitation ; Field programmable gate arrays ; FPGA accelerator ; heterogeneous ; Intersections ; MPSoC ; Multiprocessing ; Programmable logic arrays ; Ray tracing ; Synthesis</subject><ispartof>Concurrency and computation, 2021-06, Vol.33 (11), p.n/a</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2542-5d126605a1ae19daecafd6375a28f1831271527d297a520705fc58535c4e14413</cites><orcidid>0000-0002-8931-9397 ; 0000-0002-3199-4322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sampaio, Adrianno A.</creatorcontrib><creatorcontrib>Sena, Alexandre C.</creatorcontrib><creatorcontrib>Nery, Alexandre S.</creatorcontrib><title>Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures</title><title>Concurrency and computation</title><description>Summary
The ray‐tracing algorithm is very costly regarding time complexity and while many techniques have been conceived over the years with the purpose of accelerating its execution, one stands out: parallelism exploitation of ray‐triangle intersection operations. In this sense, field‐programmable gate arrays (FPGAs) have plenty resources to run specialized accelerators that execute multiple operations in parallel. Moreover, modern FPGAs are embedded with multiprocessor systems‐on‐chip based on ARM architecture, which can be used simultaneously with the FPGA programmable logic to further accelerate the application execution. In this work, we present and analyze a reconfigurable accelerator for ray‐tracing specialized in computing ray‐triangle intersections at the network edge of a heterogeneous cloud computing environment. The accelerator is specified using Xilinx high‐level synthesis and is implemented in a Xilinx Zynq FPGA (XC7Z020‐1CLG400C). We also present an execution model which enables the exploitation of the available computing elements of the heterogeneous system: ARM Cortex‐A53, FPGA programmable logic, and cloud machines. Experimental performance and synthesis results show that the heterogeneous system can efficiently render a simplified version of the Stanford Bunny model when using the hardware accelerator with up to six instances of a ray‐triangle intersection unit together with the other computing resources.</description><subject>Accelerators</subject><subject>Algorithms</subject><subject>ARM</subject><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>edge/cloud computing</subject><subject>Exploitation</subject><subject>Field programmable gate arrays</subject><subject>FPGA accelerator</subject><subject>heterogeneous</subject><subject>Intersections</subject><subject>MPSoC</subject><subject>Multiprocessing</subject><subject>Programmable logic arrays</subject><subject>Ray tracing</subject><subject>Synthesis</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M9Kw0AQBvBFFKxV8BECXryk3ZnNJOlRSv0DFT3oeVk3kzYlZutugvTmI_iMPomJFW-eZmB-fAOfEOcgJyAlTu2WJ5QjHogRkMJYpio5_NsxPRYnIWykBJAKRuJ-0ZiXumpW0Zpb9m7FDbsuRN7svj4-W2_scDPWcs3etJVroqqJuFjx1NauKyLj7bpq2bad53AqjkpTBz77nWPxfL14mt_Gy4ebu_nVMrZICcZUAKapJAOGYVYYtqYsUpWRwbyEXAFmQJgVOMsMocwklZZyUmQThiQBNRYX-9ytd28dh1ZvXOeb_qVGQpK5JFC9utwr610Inku99dWr8TsNUg9l6b4sPZTV03hP36uad_86PX9c_PhvShVq0g</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Sampaio, Adrianno A.</creator><creator>Sena, Alexandre C.</creator><creator>Nery, Alexandre S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8931-9397</orcidid><orcidid>https://orcid.org/0000-0002-3199-4322</orcidid></search><sort><creationdate>20210610</creationdate><title>Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures</title><author>Sampaio, Adrianno A. ; Sena, Alexandre C. ; Nery, Alexandre S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2542-5d126605a1ae19daecafd6375a28f1831271527d297a520705fc58535c4e14413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerators</topic><topic>Algorithms</topic><topic>ARM</topic><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>edge/cloud computing</topic><topic>Exploitation</topic><topic>Field programmable gate arrays</topic><topic>FPGA accelerator</topic><topic>heterogeneous</topic><topic>Intersections</topic><topic>MPSoC</topic><topic>Multiprocessing</topic><topic>Programmable logic arrays</topic><topic>Ray tracing</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sampaio, Adrianno A.</creatorcontrib><creatorcontrib>Sena, Alexandre C.</creatorcontrib><creatorcontrib>Nery, Alexandre S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sampaio, Adrianno A.</au><au>Sena, Alexandre C.</au><au>Nery, Alexandre S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures</atitle><jtitle>Concurrency and computation</jtitle><date>2021-06-10</date><risdate>2021</risdate><volume>33</volume><issue>11</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
The ray‐tracing algorithm is very costly regarding time complexity and while many techniques have been conceived over the years with the purpose of accelerating its execution, one stands out: parallelism exploitation of ray‐triangle intersection operations. In this sense, field‐programmable gate arrays (FPGAs) have plenty resources to run specialized accelerators that execute multiple operations in parallel. Moreover, modern FPGAs are embedded with multiprocessor systems‐on‐chip based on ARM architecture, which can be used simultaneously with the FPGA programmable logic to further accelerate the application execution. In this work, we present and analyze a reconfigurable accelerator for ray‐tracing specialized in computing ray‐triangle intersections at the network edge of a heterogeneous cloud computing environment. The accelerator is specified using Xilinx high‐level synthesis and is implemented in a Xilinx Zynq FPGA (XC7Z020‐1CLG400C). We also present an execution model which enables the exploitation of the available computing elements of the heterogeneous system: ARM Cortex‐A53, FPGA programmable logic, and cloud machines. Experimental performance and synthesis results show that the heterogeneous system can efficiently render a simplified version of the Stanford Bunny model when using the hardware accelerator with up to six instances of a ray‐triangle intersection unit together with the other computing resources.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5822</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8931-9397</orcidid><orcidid>https://orcid.org/0000-0002-3199-4322</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2021-06, Vol.33 (11), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2525080513 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Accelerators Algorithms ARM Cloud computing Computer architecture edge/cloud computing Exploitation Field programmable gate arrays FPGA accelerator heterogeneous Intersections MPSoC Multiprocessing Programmable logic arrays Ray tracing Synthesis |
title | Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20heterogeneous%20ray%E2%80%90tracing%20acceleration%20in%20edge/cloud%20architectures&rft.jtitle=Concurrency%20and%20computation&rft.au=Sampaio,%20Adrianno%20A.&rft.date=2021-06-10&rft.volume=33&rft.issue=11&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5822&rft_dat=%3Cproquest_cross%3E2525080513%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2542-5d126605a1ae19daecafd6375a28f1831271527d297a520705fc58535c4e14413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2525080513&rft_id=info:pmid/&rfr_iscdi=true |