Loading…

Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures

Summary The ray‐tracing algorithm is very costly regarding time complexity and while many techniques have been conceived over the years with the purpose of accelerating its execution, one stands out: parallelism exploitation of ray‐triangle intersection operations. In this sense, field‐programmable...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation 2021-06, Vol.33 (11), p.n/a
Main Authors: Sampaio, Adrianno A., Sena, Alexandre C., Nery, Alexandre S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2542-5d126605a1ae19daecafd6375a28f1831271527d297a520705fc58535c4e14413
container_end_page n/a
container_issue 11
container_start_page
container_title Concurrency and computation
container_volume 33
creator Sampaio, Adrianno A.
Sena, Alexandre C.
Nery, Alexandre S.
description Summary The ray‐tracing algorithm is very costly regarding time complexity and while many techniques have been conceived over the years with the purpose of accelerating its execution, one stands out: parallelism exploitation of ray‐triangle intersection operations. In this sense, field‐programmable gate arrays (FPGAs) have plenty resources to run specialized accelerators that execute multiple operations in parallel. Moreover, modern FPGAs are embedded with multiprocessor systems‐on‐chip based on ARM architecture, which can be used simultaneously with the FPGA programmable logic to further accelerate the application execution. In this work, we present and analyze a reconfigurable accelerator for ray‐tracing specialized in computing ray‐triangle intersections at the network edge of a heterogeneous cloud computing environment. The accelerator is specified using Xilinx high‐level synthesis and is implemented in a Xilinx Zynq FPGA (XC7Z020‐1CLG400C). We also present an execution model which enables the exploitation of the available computing elements of the heterogeneous system: ARM Cortex‐A53, FPGA programmable logic, and cloud machines. Experimental performance and synthesis results show that the heterogeneous system can efficiently render a simplified version of the Stanford Bunny model when using the hardware accelerator with up to six instances of a ray‐triangle intersection unit together with the other computing resources.
doi_str_mv 10.1002/cpe.5822
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525080513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525080513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2542-5d126605a1ae19daecafd6375a28f1831271527d297a520705fc58535c4e14413</originalsourceid><addsrcrecordid>eNp10M9Kw0AQBvBFFKxV8BECXryk3ZnNJOlRSv0DFT3oeVk3kzYlZutugvTmI_iMPomJFW-eZmB-fAOfEOcgJyAlTu2WJ5QjHogRkMJYpio5_NsxPRYnIWykBJAKRuJ-0ZiXumpW0Zpb9m7FDbsuRN7svj4-W2_scDPWcs3etJVroqqJuFjx1NauKyLj7bpq2bad53AqjkpTBz77nWPxfL14mt_Gy4ebu_nVMrZICcZUAKapJAOGYVYYtqYsUpWRwbyEXAFmQJgVOMsMocwklZZyUmQThiQBNRYX-9ytd28dh1ZvXOeb_qVGQpK5JFC9utwr610Inku99dWr8TsNUg9l6b4sPZTV03hP36uad_86PX9c_PhvShVq0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525080513</pqid></control><display><type>article</type><title>Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Sampaio, Adrianno A. ; Sena, Alexandre C. ; Nery, Alexandre S.</creator><creatorcontrib>Sampaio, Adrianno A. ; Sena, Alexandre C. ; Nery, Alexandre S.</creatorcontrib><description>Summary The ray‐tracing algorithm is very costly regarding time complexity and while many techniques have been conceived over the years with the purpose of accelerating its execution, one stands out: parallelism exploitation of ray‐triangle intersection operations. In this sense, field‐programmable gate arrays (FPGAs) have plenty resources to run specialized accelerators that execute multiple operations in parallel. Moreover, modern FPGAs are embedded with multiprocessor systems‐on‐chip based on ARM architecture, which can be used simultaneously with the FPGA programmable logic to further accelerate the application execution. In this work, we present and analyze a reconfigurable accelerator for ray‐tracing specialized in computing ray‐triangle intersections at the network edge of a heterogeneous cloud computing environment. The accelerator is specified using Xilinx high‐level synthesis and is implemented in a Xilinx Zynq FPGA (XC7Z020‐1CLG400C). We also present an execution model which enables the exploitation of the available computing elements of the heterogeneous system: ARM Cortex‐A53, FPGA programmable logic, and cloud machines. Experimental performance and synthesis results show that the heterogeneous system can efficiently render a simplified version of the Stanford Bunny model when using the hardware accelerator with up to six instances of a ray‐triangle intersection unit together with the other computing resources.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5822</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accelerators ; Algorithms ; ARM ; Cloud computing ; Computer architecture ; edge/cloud computing ; Exploitation ; Field programmable gate arrays ; FPGA accelerator ; heterogeneous ; Intersections ; MPSoC ; Multiprocessing ; Programmable logic arrays ; Ray tracing ; Synthesis</subject><ispartof>Concurrency and computation, 2021-06, Vol.33 (11), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2542-5d126605a1ae19daecafd6375a28f1831271527d297a520705fc58535c4e14413</cites><orcidid>0000-0002-8931-9397 ; 0000-0002-3199-4322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sampaio, Adrianno A.</creatorcontrib><creatorcontrib>Sena, Alexandre C.</creatorcontrib><creatorcontrib>Nery, Alexandre S.</creatorcontrib><title>Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures</title><title>Concurrency and computation</title><description>Summary The ray‐tracing algorithm is very costly regarding time complexity and while many techniques have been conceived over the years with the purpose of accelerating its execution, one stands out: parallelism exploitation of ray‐triangle intersection operations. In this sense, field‐programmable gate arrays (FPGAs) have plenty resources to run specialized accelerators that execute multiple operations in parallel. Moreover, modern FPGAs are embedded with multiprocessor systems‐on‐chip based on ARM architecture, which can be used simultaneously with the FPGA programmable logic to further accelerate the application execution. In this work, we present and analyze a reconfigurable accelerator for ray‐tracing specialized in computing ray‐triangle intersections at the network edge of a heterogeneous cloud computing environment. The accelerator is specified using Xilinx high‐level synthesis and is implemented in a Xilinx Zynq FPGA (XC7Z020‐1CLG400C). We also present an execution model which enables the exploitation of the available computing elements of the heterogeneous system: ARM Cortex‐A53, FPGA programmable logic, and cloud machines. Experimental performance and synthesis results show that the heterogeneous system can efficiently render a simplified version of the Stanford Bunny model when using the hardware accelerator with up to six instances of a ray‐triangle intersection unit together with the other computing resources.</description><subject>Accelerators</subject><subject>Algorithms</subject><subject>ARM</subject><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>edge/cloud computing</subject><subject>Exploitation</subject><subject>Field programmable gate arrays</subject><subject>FPGA accelerator</subject><subject>heterogeneous</subject><subject>Intersections</subject><subject>MPSoC</subject><subject>Multiprocessing</subject><subject>Programmable logic arrays</subject><subject>Ray tracing</subject><subject>Synthesis</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M9Kw0AQBvBFFKxV8BECXryk3ZnNJOlRSv0DFT3oeVk3kzYlZutugvTmI_iMPomJFW-eZmB-fAOfEOcgJyAlTu2WJ5QjHogRkMJYpio5_NsxPRYnIWykBJAKRuJ-0ZiXumpW0Zpb9m7FDbsuRN7svj4-W2_scDPWcs3etJVroqqJuFjx1NauKyLj7bpq2bad53AqjkpTBz77nWPxfL14mt_Gy4ebu_nVMrZICcZUAKapJAOGYVYYtqYsUpWRwbyEXAFmQJgVOMsMocwklZZyUmQThiQBNRYX-9ytd28dh1ZvXOeb_qVGQpK5JFC9utwr610Inku99dWr8TsNUg9l6b4sPZTV03hP36uad_86PX9c_PhvShVq0g</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Sampaio, Adrianno A.</creator><creator>Sena, Alexandre C.</creator><creator>Nery, Alexandre S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8931-9397</orcidid><orcidid>https://orcid.org/0000-0002-3199-4322</orcidid></search><sort><creationdate>20210610</creationdate><title>Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures</title><author>Sampaio, Adrianno A. ; Sena, Alexandre C. ; Nery, Alexandre S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2542-5d126605a1ae19daecafd6375a28f1831271527d297a520705fc58535c4e14413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerators</topic><topic>Algorithms</topic><topic>ARM</topic><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>edge/cloud computing</topic><topic>Exploitation</topic><topic>Field programmable gate arrays</topic><topic>FPGA accelerator</topic><topic>heterogeneous</topic><topic>Intersections</topic><topic>MPSoC</topic><topic>Multiprocessing</topic><topic>Programmable logic arrays</topic><topic>Ray tracing</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sampaio, Adrianno A.</creatorcontrib><creatorcontrib>Sena, Alexandre C.</creatorcontrib><creatorcontrib>Nery, Alexandre S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sampaio, Adrianno A.</au><au>Sena, Alexandre C.</au><au>Nery, Alexandre S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures</atitle><jtitle>Concurrency and computation</jtitle><date>2021-06-10</date><risdate>2021</risdate><volume>33</volume><issue>11</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary The ray‐tracing algorithm is very costly regarding time complexity and while many techniques have been conceived over the years with the purpose of accelerating its execution, one stands out: parallelism exploitation of ray‐triangle intersection operations. In this sense, field‐programmable gate arrays (FPGAs) have plenty resources to run specialized accelerators that execute multiple operations in parallel. Moreover, modern FPGAs are embedded with multiprocessor systems‐on‐chip based on ARM architecture, which can be used simultaneously with the FPGA programmable logic to further accelerate the application execution. In this work, we present and analyze a reconfigurable accelerator for ray‐tracing specialized in computing ray‐triangle intersections at the network edge of a heterogeneous cloud computing environment. The accelerator is specified using Xilinx high‐level synthesis and is implemented in a Xilinx Zynq FPGA (XC7Z020‐1CLG400C). We also present an execution model which enables the exploitation of the available computing elements of the heterogeneous system: ARM Cortex‐A53, FPGA programmable logic, and cloud machines. Experimental performance and synthesis results show that the heterogeneous system can efficiently render a simplified version of the Stanford Bunny model when using the hardware accelerator with up to six instances of a ray‐triangle intersection unit together with the other computing resources.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5822</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8931-9397</orcidid><orcidid>https://orcid.org/0000-0002-3199-4322</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2021-06, Vol.33 (11), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2525080513
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Accelerators
Algorithms
ARM
Cloud computing
Computer architecture
edge/cloud computing
Exploitation
Field programmable gate arrays
FPGA accelerator
heterogeneous
Intersections
MPSoC
Multiprocessing
Programmable logic arrays
Ray tracing
Synthesis
title Enabling heterogeneous ray‐tracing acceleration in edge/cloud architectures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20heterogeneous%20ray%E2%80%90tracing%20acceleration%20in%20edge/cloud%20architectures&rft.jtitle=Concurrency%20and%20computation&rft.au=Sampaio,%20Adrianno%20A.&rft.date=2021-06-10&rft.volume=33&rft.issue=11&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5822&rft_dat=%3Cproquest_cross%3E2525080513%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2542-5d126605a1ae19daecafd6375a28f1831271527d297a520705fc58535c4e14413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2525080513&rft_id=info:pmid/&rfr_iscdi=true