Loading…

Perturbation-based Frequency Domain Linear and Nonlinear Noise Estimation

In this paper, a new method for the separation of noise categories based on Four-Wave Mixing is presented. The theoretical analysis is grounded in the Gaussian Noise model and verified by split step simulations. The noise categories react differently to the introduced perturbations, by performing a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-05
Main Authors: Vaquero-Caballero, F J, Ives, D J, Savory, S J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vaquero-Caballero, F J
Ives, D J
Savory, S J
description In this paper, a new method for the separation of noise categories based on Four-Wave Mixing is presented. The theoretical analysis is grounded in the Gaussian Noise model and verified by split step simulations. The noise categories react differently to the introduced perturbations, by performing a set of perturbations the behaviour of the different categories can be separated by means of a least-square fitting. Given ASE is independent of the induced perturbations, it is possible to separate noise contributions. The analysis includes constant and variable power perturbations. The estimation of the noise categories is discussed from two points of view: NSR evolution post-DSP processing, and over the power spectral density in a notched region. The NSR estimation can only be performed at reception, whereas the power spectral density approach can be performed along the optical link if a high resolution Optical Spectrum Analyzer is available. Additionally, we perform a simple experimental verification considering of two WaveLogic 3 transceivers for the NSR, successfully estimating the noise contributions.
doi_str_mv 10.48550/arxiv.2105.03973
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2525273205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525273205</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-d283315962a1aac35b0367bf13afd4383fa31f6230ab203503b4f295207e47323</originalsourceid><addsrcrecordid>eNotjk9LAzEUxIMgWGo_gLeA511f3tvsn6PUVgtL9dB7eekmkNJmNdkV_fYutqdhYGZ-I8SDgryotYYnjj_-O0cFOgdqKroRMyRSWV0g3olFSkcAwLJCrWkmNh82DmM0PPg-ZIaT7eQ62q_RhsOvfOnP7INsfbAcJYdObvtwurht75OVqzT483_5Xtw6PiW7uOpc7Nar3fIta99fN8vnNmONOuuwns7opkRWzAfSBqisjFPEriuoJsekXIkEbBBIA5nCYaMRKltUhDQXj5fZz9hPL9OwP_ZjDBNxjxMApwxo-gNZfkzj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525273205</pqid></control><display><type>article</type><title>Perturbation-based Frequency Domain Linear and Nonlinear Noise Estimation</title><source>Publicly Available Content Database</source><creator>Vaquero-Caballero, F J ; Ives, D J ; Savory, S J</creator><creatorcontrib>Vaquero-Caballero, F J ; Ives, D J ; Savory, S J</creatorcontrib><description>In this paper, a new method for the separation of noise categories based on Four-Wave Mixing is presented. The theoretical analysis is grounded in the Gaussian Noise model and verified by split step simulations. The noise categories react differently to the introduced perturbations, by performing a set of perturbations the behaviour of the different categories can be separated by means of a least-square fitting. Given ASE is independent of the induced perturbations, it is possible to separate noise contributions. The analysis includes constant and variable power perturbations. The estimation of the noise categories is discussed from two points of view: NSR evolution post-DSP processing, and over the power spectral density in a notched region. The NSR estimation can only be performed at reception, whereas the power spectral density approach can be performed along the optical link if a high resolution Optical Spectrum Analyzer is available. Additionally, we perform a simple experimental verification considering of two WaveLogic 3 transceivers for the NSR, successfully estimating the noise contributions.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2105.03973</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Categories ; Four-wave mixing ; Noise ; Perturbation ; Power spectral density ; Random noise ; Spectrum analysers ; Transceivers</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2525273205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Vaquero-Caballero, F J</creatorcontrib><creatorcontrib>Ives, D J</creatorcontrib><creatorcontrib>Savory, S J</creatorcontrib><title>Perturbation-based Frequency Domain Linear and Nonlinear Noise Estimation</title><title>arXiv.org</title><description>In this paper, a new method for the separation of noise categories based on Four-Wave Mixing is presented. The theoretical analysis is grounded in the Gaussian Noise model and verified by split step simulations. The noise categories react differently to the introduced perturbations, by performing a set of perturbations the behaviour of the different categories can be separated by means of a least-square fitting. Given ASE is independent of the induced perturbations, it is possible to separate noise contributions. The analysis includes constant and variable power perturbations. The estimation of the noise categories is discussed from two points of view: NSR evolution post-DSP processing, and over the power spectral density in a notched region. The NSR estimation can only be performed at reception, whereas the power spectral density approach can be performed along the optical link if a high resolution Optical Spectrum Analyzer is available. Additionally, we perform a simple experimental verification considering of two WaveLogic 3 transceivers for the NSR, successfully estimating the noise contributions.</description><subject>Categories</subject><subject>Four-wave mixing</subject><subject>Noise</subject><subject>Perturbation</subject><subject>Power spectral density</subject><subject>Random noise</subject><subject>Spectrum analysers</subject><subject>Transceivers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk9LAzEUxIMgWGo_gLeA511f3tvsn6PUVgtL9dB7eekmkNJmNdkV_fYutqdhYGZ-I8SDgryotYYnjj_-O0cFOgdqKroRMyRSWV0g3olFSkcAwLJCrWkmNh82DmM0PPg-ZIaT7eQ62q_RhsOvfOnP7INsfbAcJYdObvtwurht75OVqzT483_5Xtw6PiW7uOpc7Nar3fIta99fN8vnNmONOuuwns7opkRWzAfSBqisjFPEriuoJsekXIkEbBBIA5nCYaMRKltUhDQXj5fZz9hPL9OwP_ZjDBNxjxMApwxo-gNZfkzj</recordid><startdate>20210509</startdate><enddate>20210509</enddate><creator>Vaquero-Caballero, F J</creator><creator>Ives, D J</creator><creator>Savory, S J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210509</creationdate><title>Perturbation-based Frequency Domain Linear and Nonlinear Noise Estimation</title><author>Vaquero-Caballero, F J ; Ives, D J ; Savory, S J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-d283315962a1aac35b0367bf13afd4383fa31f6230ab203503b4f295207e47323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Categories</topic><topic>Four-wave mixing</topic><topic>Noise</topic><topic>Perturbation</topic><topic>Power spectral density</topic><topic>Random noise</topic><topic>Spectrum analysers</topic><topic>Transceivers</topic><toplevel>online_resources</toplevel><creatorcontrib>Vaquero-Caballero, F J</creatorcontrib><creatorcontrib>Ives, D J</creatorcontrib><creatorcontrib>Savory, S J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaquero-Caballero, F J</au><au>Ives, D J</au><au>Savory, S J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation-based Frequency Domain Linear and Nonlinear Noise Estimation</atitle><jtitle>arXiv.org</jtitle><date>2021-05-09</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, a new method for the separation of noise categories based on Four-Wave Mixing is presented. The theoretical analysis is grounded in the Gaussian Noise model and verified by split step simulations. The noise categories react differently to the introduced perturbations, by performing a set of perturbations the behaviour of the different categories can be separated by means of a least-square fitting. Given ASE is independent of the induced perturbations, it is possible to separate noise contributions. The analysis includes constant and variable power perturbations. The estimation of the noise categories is discussed from two points of view: NSR evolution post-DSP processing, and over the power spectral density in a notched region. The NSR estimation can only be performed at reception, whereas the power spectral density approach can be performed along the optical link if a high resolution Optical Spectrum Analyzer is available. Additionally, we perform a simple experimental verification considering of two WaveLogic 3 transceivers for the NSR, successfully estimating the noise contributions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2105.03973</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2525273205
source Publicly Available Content Database
subjects Categories
Four-wave mixing
Noise
Perturbation
Power spectral density
Random noise
Spectrum analysers
Transceivers
title Perturbation-based Frequency Domain Linear and Nonlinear Noise Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation-based%20Frequency%20Domain%20Linear%20and%20Nonlinear%20Noise%20Estimation&rft.jtitle=arXiv.org&rft.au=Vaquero-Caballero,%20F%20J&rft.date=2021-05-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2105.03973&rft_dat=%3Cproquest%3E2525273205%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-d283315962a1aac35b0367bf13afd4383fa31f6230ab203503b4f295207e47323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2525273205&rft_id=info:pmid/&rfr_iscdi=true