Loading…
Appraisement and Analysis of Dynamical Stability of Under-Constrained Cable-Driven Lower-Limb Rehabilitation Training Robot
The dynamical stability of the cable-driven lower-limb rehabilitation training robot (CLLRTR) is a crucial question. Based on the established dynamics model of CLLRTR, the solution to the wrench closure of the under-constrained system is presented. Secondly, the stability index of CLLRTR is proposed...
Saved in:
Published in: | Robotica 2021-06, Vol.39 (6), p.1023-1036 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c317t-f29297a6560242c7a7c630074652dbeee36064051819214a45b3e19120ac54b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c317t-f29297a6560242c7a7c630074652dbeee36064051819214a45b3e19120ac54b43 |
container_end_page | 1036 |
container_issue | 6 |
container_start_page | 1023 |
container_title | Robotica |
container_volume | 39 |
creator | Wang, Yan-Lin Wang, Ke-Yi Wang, Wan-Li Han, Zhuang Zhang, Zi-Xing |
description | The dynamical stability of the cable-driven lower-limb rehabilitation training robot (CLLRTR) is a crucial question. Based on the established dynamics model of CLLRTR, the solution to the wrench closure of the under-constrained system is presented. Secondly, the stability index of CLLRTR is proposed by the Krasovski method. Finally, in order to analyze the stability distribution of CLLRTR in the workspace, the stability evaluation index in the workspace is calculated using the eigenvalue decomposition method. The stability distribution laws of CLLRTR are further verified by the experimental study. The results provide references for studying trajectory planning and anti-pendulum control of CLLRTR. |
doi_str_mv | 10.1017/S0263574720000879 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525514815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574720000879</cupid><sourcerecordid>2525514815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-f29297a6560242c7a7c630074652dbeee36064051819214a45b3e19120ac54b43</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19UkzaNdDh1fUBDmsS5pm44Z2qQmGaX4522ZARfi3Vy453wH7gHgFqN7jLB4WCPCYyaoIGicRKRnYIYpT6OE8-QczCY5mvRLcOX9HiEcYypm4HvR905qrzplApSmhgsj28FrD20Dl4ORna5kC9dBlrrVYZjOW1MrF2XW-DCyRtUwk2WroqXTn8rA3H6Ncq67Eq7U-5GTQVsDN5Ndmx1c2dKGa3DRyNarm9Oeg-3T4yZ7ifK359dskUdVjEWIGpKSVEjOOCKUVEKKiscICcoZqUulVMwRp4jhBKcEU0lZGSucYoJkxWhJ4zm4O-b2zn4clA_F3h7c-KYvCCOMYZpgNrrw0VU5671TTdE73Uk3FBgVU8fFn45HJj4xsiudrnfqN_p_6ge1cH17</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525514815</pqid></control><display><type>article</type><title>Appraisement and Analysis of Dynamical Stability of Under-Constrained Cable-Driven Lower-Limb Rehabilitation Training Robot</title><source>Cambridge Journals Online</source><creator>Wang, Yan-Lin ; Wang, Ke-Yi ; Wang, Wan-Li ; Han, Zhuang ; Zhang, Zi-Xing</creator><creatorcontrib>Wang, Yan-Lin ; Wang, Ke-Yi ; Wang, Wan-Li ; Han, Zhuang ; Zhang, Zi-Xing</creatorcontrib><description>The dynamical stability of the cable-driven lower-limb rehabilitation training robot (CLLRTR) is a crucial question. Based on the established dynamics model of CLLRTR, the solution to the wrench closure of the under-constrained system is presented. Secondly, the stability index of CLLRTR is proposed by the Krasovski method. Finally, in order to analyze the stability distribution of CLLRTR in the workspace, the stability evaluation index in the workspace is calculated using the eigenvalue decomposition method. The stability distribution laws of CLLRTR are further verified by the experimental study. The results provide references for studying trajectory planning and anti-pendulum control of CLLRTR.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574720000879</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dynamic stability ; Eigenvalues ; Rehabilitation ; Robots ; Stability analysis ; Training ; Trajectory control ; Trajectory planning</subject><ispartof>Robotica, 2021-06, Vol.39 (6), p.1023-1036</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-f29297a6560242c7a7c630074652dbeee36064051819214a45b3e19120ac54b43</citedby><cites>FETCH-LOGICAL-c317t-f29297a6560242c7a7c630074652dbeee36064051819214a45b3e19120ac54b43</cites><orcidid>0000-0002-2975-0361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574720000879/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Wang, Yan-Lin</creatorcontrib><creatorcontrib>Wang, Ke-Yi</creatorcontrib><creatorcontrib>Wang, Wan-Li</creatorcontrib><creatorcontrib>Han, Zhuang</creatorcontrib><creatorcontrib>Zhang, Zi-Xing</creatorcontrib><title>Appraisement and Analysis of Dynamical Stability of Under-Constrained Cable-Driven Lower-Limb Rehabilitation Training Robot</title><title>Robotica</title><addtitle>Robotica</addtitle><description>The dynamical stability of the cable-driven lower-limb rehabilitation training robot (CLLRTR) is a crucial question. Based on the established dynamics model of CLLRTR, the solution to the wrench closure of the under-constrained system is presented. Secondly, the stability index of CLLRTR is proposed by the Krasovski method. Finally, in order to analyze the stability distribution of CLLRTR in the workspace, the stability evaluation index in the workspace is calculated using the eigenvalue decomposition method. The stability distribution laws of CLLRTR are further verified by the experimental study. The results provide references for studying trajectory planning and anti-pendulum control of CLLRTR.</description><subject>Dynamic stability</subject><subject>Eigenvalues</subject><subject>Rehabilitation</subject><subject>Robots</subject><subject>Stability analysis</subject><subject>Training</subject><subject>Trajectory control</subject><subject>Trajectory planning</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19UkzaNdDh1fUBDmsS5pm44Z2qQmGaX4522ZARfi3Vy453wH7gHgFqN7jLB4WCPCYyaoIGicRKRnYIYpT6OE8-QczCY5mvRLcOX9HiEcYypm4HvR905qrzplApSmhgsj28FrD20Dl4ORna5kC9dBlrrVYZjOW1MrF2XW-DCyRtUwk2WroqXTn8rA3H6Ncq67Eq7U-5GTQVsDN5Ndmx1c2dKGa3DRyNarm9Oeg-3T4yZ7ifK359dskUdVjEWIGpKSVEjOOCKUVEKKiscICcoZqUulVMwRp4jhBKcEU0lZGSucYoJkxWhJ4zm4O-b2zn4clA_F3h7c-KYvCCOMYZpgNrrw0VU5671TTdE73Uk3FBgVU8fFn45HJj4xsiudrnfqN_p_6ge1cH17</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Wang, Yan-Lin</creator><creator>Wang, Ke-Yi</creator><creator>Wang, Wan-Li</creator><creator>Han, Zhuang</creator><creator>Zhang, Zi-Xing</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2975-0361</orcidid></search><sort><creationdate>202106</creationdate><title>Appraisement and Analysis of Dynamical Stability of Under-Constrained Cable-Driven Lower-Limb Rehabilitation Training Robot</title><author>Wang, Yan-Lin ; Wang, Ke-Yi ; Wang, Wan-Li ; Han, Zhuang ; Zhang, Zi-Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-f29297a6560242c7a7c630074652dbeee36064051819214a45b3e19120ac54b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamic stability</topic><topic>Eigenvalues</topic><topic>Rehabilitation</topic><topic>Robots</topic><topic>Stability analysis</topic><topic>Training</topic><topic>Trajectory control</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan-Lin</creatorcontrib><creatorcontrib>Wang, Ke-Yi</creatorcontrib><creatorcontrib>Wang, Wan-Li</creatorcontrib><creatorcontrib>Han, Zhuang</creatorcontrib><creatorcontrib>Zhang, Zi-Xing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan-Lin</au><au>Wang, Ke-Yi</au><au>Wang, Wan-Li</au><au>Han, Zhuang</au><au>Zhang, Zi-Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Appraisement and Analysis of Dynamical Stability of Under-Constrained Cable-Driven Lower-Limb Rehabilitation Training Robot</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2021-06</date><risdate>2021</risdate><volume>39</volume><issue>6</issue><spage>1023</spage><epage>1036</epage><pages>1023-1036</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>The dynamical stability of the cable-driven lower-limb rehabilitation training robot (CLLRTR) is a crucial question. Based on the established dynamics model of CLLRTR, the solution to the wrench closure of the under-constrained system is presented. Secondly, the stability index of CLLRTR is proposed by the Krasovski method. Finally, in order to analyze the stability distribution of CLLRTR in the workspace, the stability evaluation index in the workspace is calculated using the eigenvalue decomposition method. The stability distribution laws of CLLRTR are further verified by the experimental study. The results provide references for studying trajectory planning and anti-pendulum control of CLLRTR.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574720000879</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2975-0361</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2021-06, Vol.39 (6), p.1023-1036 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_journals_2525514815 |
source | Cambridge Journals Online |
subjects | Dynamic stability Eigenvalues Rehabilitation Robots Stability analysis Training Trajectory control Trajectory planning |
title | Appraisement and Analysis of Dynamical Stability of Under-Constrained Cable-Driven Lower-Limb Rehabilitation Training Robot |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Appraisement%20and%20Analysis%20of%20Dynamical%20Stability%20of%20Under-Constrained%20Cable-Driven%20Lower-Limb%20Rehabilitation%20Training%20Robot&rft.jtitle=Robotica&rft.au=Wang,%20Yan-Lin&rft.date=2021-06&rft.volume=39&rft.issue=6&rft.spage=1023&rft.epage=1036&rft.pages=1023-1036&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574720000879&rft_dat=%3Cproquest_cross%3E2525514815%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-f29297a6560242c7a7c630074652dbeee36064051819214a45b3e19120ac54b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2525514815&rft_id=info:pmid/&rft_cupid=10_1017_S0263574720000879&rfr_iscdi=true |