Loading…

Zero-power calibration of photonic circuits at cryogenic temperatures

The continual success of superconducting photon-detection technologies in quantum photonics asserts cryogenic-compatible systems as a cornerstone of full quantum photonic integration. Here, we present a way to reversibly fine-tune the optical properties of individual waveguide structures through loc...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-05
Main Authors: Burridge, Ben M, Villarreal-Garcia, Gerardo E, Gentile, Antonio A, Pisu Jiang, Barreto, Jorge
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Burridge, Ben M
Villarreal-Garcia, Gerardo E
Gentile, Antonio A
Pisu Jiang
Barreto, Jorge
description The continual success of superconducting photon-detection technologies in quantum photonics asserts cryogenic-compatible systems as a cornerstone of full quantum photonic integration. Here, we present a way to reversibly fine-tune the optical properties of individual waveguide structures through local changes to their geometry using solidified xenon. Essentially, we remove the need for additional on-chip calibration elements, effectively zeroing the power consumption tied to reconfigurable elements, with virtually no detriment to photonic device performance. We enable passive circuit tuning in pressure-controlled environments, locally manipulating the cladding thickness over portions of optical waveguides. We realize this in a cryogenic environment, through controlled deposition of xenon gas and precise tuning of its thickness using sublimation, triggered by on-chip resistive heaters. \(\pi\) phase shifts occur over a calculated length of just \(L_{\pi}\) = 12.3\(\pm\)0.3 \(\mu m\). This work paves the way towards the integration of compact, reconfigurable photonic circuits alongside superconducting detectors, devices, or otherwise.
doi_str_mv 10.48550/arxiv.2105.04721
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2525908002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525908002</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-c53a70138cc8caddbf3cc7b6ecf258059c2e0599061cf7aba72c138f8412c8d23</originalsourceid><addsrcrecordid>eNotj01LAzEYhIMgWGp_gLeA561v3mw22aOU-gEFLz15Kdl3E02pmzXJ-vHvXdHLDAwPMwxjVwLWtVEKbmz6Ch9rFKDWUGsUZ2yBUorK1IgXbJXzEQCw0aiUXLDts0uxGuOnS5zsKXTJlhAHHj0fX2OJQyBOIdEUSua2cErf8cX9psW9jW6mp-TyJTv39pTd6t-XbH-33W8eqt3T_ePmdldZhViRklaDkIbIkO37zksi3TWOPCoDqiV0s7bQCPLadlYjzbQ3tUAyPcolu_6rHVN8n1wuh2Oc0jAvHlChasHMz-QP28xNzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525908002</pqid></control><display><type>article</type><title>Zero-power calibration of photonic circuits at cryogenic temperatures</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Burridge, Ben M ; Villarreal-Garcia, Gerardo E ; Gentile, Antonio A ; Pisu Jiang ; Barreto, Jorge</creator><creatorcontrib>Burridge, Ben M ; Villarreal-Garcia, Gerardo E ; Gentile, Antonio A ; Pisu Jiang ; Barreto, Jorge</creatorcontrib><description>The continual success of superconducting photon-detection technologies in quantum photonics asserts cryogenic-compatible systems as a cornerstone of full quantum photonic integration. Here, we present a way to reversibly fine-tune the optical properties of individual waveguide structures through local changes to their geometry using solidified xenon. Essentially, we remove the need for additional on-chip calibration elements, effectively zeroing the power consumption tied to reconfigurable elements, with virtually no detriment to photonic device performance. We enable passive circuit tuning in pressure-controlled environments, locally manipulating the cladding thickness over portions of optical waveguides. We realize this in a cryogenic environment, through controlled deposition of xenon gas and precise tuning of its thickness using sublimation, triggered by on-chip resistive heaters. \(\pi\) phase shifts occur over a calculated length of just \(L_{\pi}\) = 12.3\(\pm\)0.3 \(\mu m\). This work paves the way towards the integration of compact, reconfigurable photonic circuits alongside superconducting detectors, devices, or otherwise.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2105.04721</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Calibration ; Circuits ; Cryogenic temperature ; Optical properties ; Optical waveguides ; Photonics ; Power consumption ; Power management ; Reconfiguration ; Sublimation ; Superconductivity ; Thickness ; Tuning ; Xenon</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2525908002?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Burridge, Ben M</creatorcontrib><creatorcontrib>Villarreal-Garcia, Gerardo E</creatorcontrib><creatorcontrib>Gentile, Antonio A</creatorcontrib><creatorcontrib>Pisu Jiang</creatorcontrib><creatorcontrib>Barreto, Jorge</creatorcontrib><title>Zero-power calibration of photonic circuits at cryogenic temperatures</title><title>arXiv.org</title><description>The continual success of superconducting photon-detection technologies in quantum photonics asserts cryogenic-compatible systems as a cornerstone of full quantum photonic integration. Here, we present a way to reversibly fine-tune the optical properties of individual waveguide structures through local changes to their geometry using solidified xenon. Essentially, we remove the need for additional on-chip calibration elements, effectively zeroing the power consumption tied to reconfigurable elements, with virtually no detriment to photonic device performance. We enable passive circuit tuning in pressure-controlled environments, locally manipulating the cladding thickness over portions of optical waveguides. We realize this in a cryogenic environment, through controlled deposition of xenon gas and precise tuning of its thickness using sublimation, triggered by on-chip resistive heaters. \(\pi\) phase shifts occur over a calculated length of just \(L_{\pi}\) = 12.3\(\pm\)0.3 \(\mu m\). This work paves the way towards the integration of compact, reconfigurable photonic circuits alongside superconducting detectors, devices, or otherwise.</description><subject>Calibration</subject><subject>Circuits</subject><subject>Cryogenic temperature</subject><subject>Optical properties</subject><subject>Optical waveguides</subject><subject>Photonics</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Reconfiguration</subject><subject>Sublimation</subject><subject>Superconductivity</subject><subject>Thickness</subject><subject>Tuning</subject><subject>Xenon</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01LAzEYhIMgWGp_gLeA561v3mw22aOU-gEFLz15Kdl3E02pmzXJ-vHvXdHLDAwPMwxjVwLWtVEKbmz6Ch9rFKDWUGsUZ2yBUorK1IgXbJXzEQCw0aiUXLDts0uxGuOnS5zsKXTJlhAHHj0fX2OJQyBOIdEUSua2cErf8cX9psW9jW6mp-TyJTv39pTd6t-XbH-33W8eqt3T_ePmdldZhViRklaDkIbIkO37zksi3TWOPCoDqiV0s7bQCPLadlYjzbQ3tUAyPcolu_6rHVN8n1wuh2Oc0jAvHlChasHMz-QP28xNzQ</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Burridge, Ben M</creator><creator>Villarreal-Garcia, Gerardo E</creator><creator>Gentile, Antonio A</creator><creator>Pisu Jiang</creator><creator>Barreto, Jorge</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210511</creationdate><title>Zero-power calibration of photonic circuits at cryogenic temperatures</title><author>Burridge, Ben M ; Villarreal-Garcia, Gerardo E ; Gentile, Antonio A ; Pisu Jiang ; Barreto, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-c53a70138cc8caddbf3cc7b6ecf258059c2e0599061cf7aba72c138f8412c8d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calibration</topic><topic>Circuits</topic><topic>Cryogenic temperature</topic><topic>Optical properties</topic><topic>Optical waveguides</topic><topic>Photonics</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Reconfiguration</topic><topic>Sublimation</topic><topic>Superconductivity</topic><topic>Thickness</topic><topic>Tuning</topic><topic>Xenon</topic><toplevel>online_resources</toplevel><creatorcontrib>Burridge, Ben M</creatorcontrib><creatorcontrib>Villarreal-Garcia, Gerardo E</creatorcontrib><creatorcontrib>Gentile, Antonio A</creatorcontrib><creatorcontrib>Pisu Jiang</creatorcontrib><creatorcontrib>Barreto, Jorge</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burridge, Ben M</au><au>Villarreal-Garcia, Gerardo E</au><au>Gentile, Antonio A</au><au>Pisu Jiang</au><au>Barreto, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-power calibration of photonic circuits at cryogenic temperatures</atitle><jtitle>arXiv.org</jtitle><date>2021-05-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The continual success of superconducting photon-detection technologies in quantum photonics asserts cryogenic-compatible systems as a cornerstone of full quantum photonic integration. Here, we present a way to reversibly fine-tune the optical properties of individual waveguide structures through local changes to their geometry using solidified xenon. Essentially, we remove the need for additional on-chip calibration elements, effectively zeroing the power consumption tied to reconfigurable elements, with virtually no detriment to photonic device performance. We enable passive circuit tuning in pressure-controlled environments, locally manipulating the cladding thickness over portions of optical waveguides. We realize this in a cryogenic environment, through controlled deposition of xenon gas and precise tuning of its thickness using sublimation, triggered by on-chip resistive heaters. \(\pi\) phase shifts occur over a calculated length of just \(L_{\pi}\) = 12.3\(\pm\)0.3 \(\mu m\). This work paves the way towards the integration of compact, reconfigurable photonic circuits alongside superconducting detectors, devices, or otherwise.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2105.04721</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2525908002
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Calibration
Circuits
Cryogenic temperature
Optical properties
Optical waveguides
Photonics
Power consumption
Power management
Reconfiguration
Sublimation
Superconductivity
Thickness
Tuning
Xenon
title Zero-power calibration of photonic circuits at cryogenic temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-power%20calibration%20of%20photonic%20circuits%20at%20cryogenic%20temperatures&rft.jtitle=arXiv.org&rft.au=Burridge,%20Ben%20M&rft.date=2021-05-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2105.04721&rft_dat=%3Cproquest%3E2525908002%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-c53a70138cc8caddbf3cc7b6ecf258059c2e0599061cf7aba72c138f8412c8d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2525908002&rft_id=info:pmid/&rfr_iscdi=true