Loading…

Diffusion Aluminide Coatings for Hot Corrosion and Oxidation Protection of Nickel-Based Superalloys: Effect of Fluoride-Based Activator Salts

The influence of two different fluoride-based activator salts (NH4F and AlF3) was studied for diffusion aluminide coatings obtained via pack cementation on a Ni-based superalloy (René 108DS). The resistance to oxidation and hot corrosion was assessed as a function of the concentration of activator s...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2021-04, Vol.11 (4), p.412
Main Authors: Genova, Virgilio, Paglia, Laura, Pulci, Giovanni, Bartuli, Cecilia, Marra, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of two different fluoride-based activator salts (NH4F and AlF3) was studied for diffusion aluminide coatings obtained via pack cementation on a Ni-based superalloy (René 108DS). The resistance to oxidation and hot corrosion was assessed as a function of the concentration of activator salts used during the synthesis process by means of pack cementation. Two different concentrations were selected for activator salts (respecting the equimolarity of fluoride in the synthesis) and the obtained diffusion coatings were compared in terms of morphology, thickness and composition, as well as in terms of microstructural evolution after high temperature exposure. Isothermal oxidation tests were conducted at 1050 °C in air for 100 h in a tubular furnace. The oxidation kinetics were evaluated by measuring the weight variation with exposure time. The microstructural evolution induced by the high temperature exposure was investigated by SEM microscopy, EDS analysis and X-ray diffraction. Results showed that the coatings obtained with AlF3 activator salt are thicker than those obtained using NH4F as a consequence of different growth mechanism during pack-cementation. Despite this evidence, it was found that the NH4F coatings show a better oxidation resistance, both in terms of total mass gain and of quality of the microstructure of the thermally grown oxide. On the other hand, coatings produced with high concentration of AlF3 exhibited a better resistance in hot corrosion conditions, showing negligible mass variations after 200 h of high temperature exposure to aggressive NaCl and Na2SO4 salts.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings11040412