Loading…

Relationships among structure, memory, and flow in sheared disordered materials

A fundamental challenge for disordered solids is predicting macroscopic yield from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-05
Main Authors: Galloway, K L, Teich, E G, Ma, X-g, Kammer, Ch, Graham, I R, Keim, N C, Reina, C, Jerolmack, D J, Yodh, A G, Arratia, P E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Galloway, K L
Teich, E G
Ma, X-g
Kammer, Ch
Graham, I R
Keim, N C
Reina, C
Jerolmack, D J
Yodh, A G
Arratia, P E
description A fundamental challenge for disordered solids is predicting macroscopic yield from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we perform laboratory experiments and numerical simulations that are designed to do just that: 2D dense colloidal systems are subjected to oscillatory shear, and particle trajectories and bulk rheology are measured. We quantify particle microstructure using excess entropy. Results reveal a direct relation between excess entropy and energy dissipation, that is insensitive to the nature of interactions among particles. We use this relation to build a physically-informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.
doi_str_mv 10.48550/arxiv.2105.06610
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2528309683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528309683</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-8a8664bdcfb2d8b4ae0596d30f8b938b2a89c221b5923339e20701ad2db1951b3</originalsourceid><addsrcrecordid>eNotjstqwzAQRUWh0JDmA7oTdBu7o5GlSMsS-oJAoGQfRpbcONhWKtl9_H1T2tW5q3MPYzcCysooBXeUvtqPEgWoErQWcMFmKKUoTIV4xRY5HwEA9QqVkjO2fQ0djW0c8qE9ZU59HN54HtNUj1MKS96HPqbvJafB86aLn7wdeD4ESsFz3-aYfPidPY0htdTla3bZnBEW_5yz3ePDbv1cbLZPL-v7TUEKZWHIaF05XzcOvXEVBVBWewmNcVYah2RsjSicsud2aQPCCgR59E5YJZycs9s_7SnF9ynkcX-MUxrOj3tUaCRYbaT8AQjfUGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528309683</pqid></control><display><type>article</type><title>Relationships among structure, memory, and flow in sheared disordered materials</title><source>Publicly Available Content Database</source><creator>Galloway, K L ; Teich, E G ; Ma, X-g ; Kammer, Ch ; Graham, I R ; Keim, N C ; Reina, C ; Jerolmack, D J ; Yodh, A G ; Arratia, P E</creator><creatorcontrib>Galloway, K L ; Teich, E G ; Ma, X-g ; Kammer, Ch ; Graham, I R ; Keim, N C ; Reina, C ; Jerolmack, D J ; Yodh, A G ; Arratia, P E</creatorcontrib><description>A fundamental challenge for disordered solids is predicting macroscopic yield from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we perform laboratory experiments and numerical simulations that are designed to do just that: 2D dense colloidal systems are subjected to oscillatory shear, and particle trajectories and bulk rheology are measured. We quantify particle microstructure using excess entropy. Results reveal a direct relation between excess entropy and energy dissipation, that is insensitive to the nature of interactions among particles. We use this relation to build a physically-informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2105.06610</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Energy dissipation ; Entropy ; Mathematical models ; Microstructure ; Particle trajectories ; Rheological properties ; Rheology</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2528309683?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Galloway, K L</creatorcontrib><creatorcontrib>Teich, E G</creatorcontrib><creatorcontrib>Ma, X-g</creatorcontrib><creatorcontrib>Kammer, Ch</creatorcontrib><creatorcontrib>Graham, I R</creatorcontrib><creatorcontrib>Keim, N C</creatorcontrib><creatorcontrib>Reina, C</creatorcontrib><creatorcontrib>Jerolmack, D J</creatorcontrib><creatorcontrib>Yodh, A G</creatorcontrib><creatorcontrib>Arratia, P E</creatorcontrib><title>Relationships among structure, memory, and flow in sheared disordered materials</title><title>arXiv.org</title><description>A fundamental challenge for disordered solids is predicting macroscopic yield from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we perform laboratory experiments and numerical simulations that are designed to do just that: 2D dense colloidal systems are subjected to oscillatory shear, and particle trajectories and bulk rheology are measured. We quantify particle microstructure using excess entropy. Results reveal a direct relation between excess entropy and energy dissipation, that is insensitive to the nature of interactions among particles. We use this relation to build a physically-informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.</description><subject>Energy dissipation</subject><subject>Entropy</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Particle trajectories</subject><subject>Rheological properties</subject><subject>Rheology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAQRUWh0JDmA7oTdBu7o5GlSMsS-oJAoGQfRpbcONhWKtl9_H1T2tW5q3MPYzcCysooBXeUvtqPEgWoErQWcMFmKKUoTIV4xRY5HwEA9QqVkjO2fQ0djW0c8qE9ZU59HN54HtNUj1MKS96HPqbvJafB86aLn7wdeD4ESsFz3-aYfPidPY0htdTla3bZnBEW_5yz3ePDbv1cbLZPL-v7TUEKZWHIaF05XzcOvXEVBVBWewmNcVYah2RsjSicsud2aQPCCgR59E5YJZycs9s_7SnF9ynkcX-MUxrOj3tUaCRYbaT8AQjfUGU</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>Galloway, K L</creator><creator>Teich, E G</creator><creator>Ma, X-g</creator><creator>Kammer, Ch</creator><creator>Graham, I R</creator><creator>Keim, N C</creator><creator>Reina, C</creator><creator>Jerolmack, D J</creator><creator>Yodh, A G</creator><creator>Arratia, P E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210514</creationdate><title>Relationships among structure, memory, and flow in sheared disordered materials</title><author>Galloway, K L ; Teich, E G ; Ma, X-g ; Kammer, Ch ; Graham, I R ; Keim, N C ; Reina, C ; Jerolmack, D J ; Yodh, A G ; Arratia, P E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-8a8664bdcfb2d8b4ae0596d30f8b938b2a89c221b5923339e20701ad2db1951b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy dissipation</topic><topic>Entropy</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Particle trajectories</topic><topic>Rheological properties</topic><topic>Rheology</topic><toplevel>online_resources</toplevel><creatorcontrib>Galloway, K L</creatorcontrib><creatorcontrib>Teich, E G</creatorcontrib><creatorcontrib>Ma, X-g</creatorcontrib><creatorcontrib>Kammer, Ch</creatorcontrib><creatorcontrib>Graham, I R</creatorcontrib><creatorcontrib>Keim, N C</creatorcontrib><creatorcontrib>Reina, C</creatorcontrib><creatorcontrib>Jerolmack, D J</creatorcontrib><creatorcontrib>Yodh, A G</creatorcontrib><creatorcontrib>Arratia, P E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galloway, K L</au><au>Teich, E G</au><au>Ma, X-g</au><au>Kammer, Ch</au><au>Graham, I R</au><au>Keim, N C</au><au>Reina, C</au><au>Jerolmack, D J</au><au>Yodh, A G</au><au>Arratia, P E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationships among structure, memory, and flow in sheared disordered materials</atitle><jtitle>arXiv.org</jtitle><date>2021-05-14</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>A fundamental challenge for disordered solids is predicting macroscopic yield from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we perform laboratory experiments and numerical simulations that are designed to do just that: 2D dense colloidal systems are subjected to oscillatory shear, and particle trajectories and bulk rheology are measured. We quantify particle microstructure using excess entropy. Results reveal a direct relation between excess entropy and energy dissipation, that is insensitive to the nature of interactions among particles. We use this relation to build a physically-informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2105.06610</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2528309683
source Publicly Available Content Database
subjects Energy dissipation
Entropy
Mathematical models
Microstructure
Particle trajectories
Rheological properties
Rheology
title Relationships among structure, memory, and flow in sheared disordered materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationships%20among%20structure,%20memory,%20and%20flow%20in%20sheared%20disordered%20materials&rft.jtitle=arXiv.org&rft.au=Galloway,%20K%20L&rft.date=2021-05-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2105.06610&rft_dat=%3Cproquest%3E2528309683%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-8a8664bdcfb2d8b4ae0596d30f8b938b2a89c221b5923339e20701ad2db1951b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528309683&rft_id=info:pmid/&rfr_iscdi=true