Loading…

Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals

Two scalable coating techniques, slot die and spray coating (SC), are used to apply cellulose nanocrystals (CNCs) to the surface of glass fibers with the goal of enhancing interfacial interactions between glass fibers and epoxy and, consequently, the strength of fiber-reinforced composites. The qual...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2021-05, Vol.28 (8), p.4685-4700
Main Authors: Haque, Ejaz, Shariatnia, Shadi, Jeong, Tae-Joong, Jarrahbashi, Dorrin, Asadi, Amir, Harris, Tequila, Moon, Robert J., Kalaitzidou, Kyriaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993
cites cdi_FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993
container_end_page 4700
container_issue 8
container_start_page 4685
container_title Cellulose (London)
container_volume 28
creator Haque, Ejaz
Shariatnia, Shadi
Jeong, Tae-Joong
Jarrahbashi, Dorrin
Asadi, Amir
Harris, Tequila
Moon, Robert J.
Kalaitzidou, Kyriaki
description Two scalable coating techniques, slot die and spray coating (SC), are used to apply cellulose nanocrystals (CNCs) to the surface of glass fibers with the goal of enhancing interfacial interactions between glass fibers and epoxy and, consequently, the strength of fiber-reinforced composites. The quality of the cellulose coatings and the interfacial shear strength, assessed via the single fiber fragmentation test, are determined as a function of the method and conditions used to coat the fibers. In addition, a comparison with glass fibers coated with identical CNC formulations using a laboratory-scale dip coating (DC) technique is provided. Results from both scalable methods were found to be comparable or superior to the DC technique, with SC outperforming DC by up to 18% on average depending on the coating applied. Further analysis was conducted on coating morphology, fracture behavior, elemental composition, and surface loading. The observed differences can be used to determine which technique is most appropriate for a given application. This work demonstrates the viability in adapting existing, scalable processes for CNC glass fiber coatings and establishes key avenues for future process optimization.
doi_str_mv 10.1007/s10570-021-03829-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528312424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528312424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgejQ_k8lkKeIfFFyo4C5k7iTtlGlSkxTtznfwDX0Sp47gztWBc885Fz6ETik5p4TIi0SJkKQgjBaE10wVfA9NqJCsqGv2so8mRFVqOHN1iI5SWhJClGR0guARTG-a3mIIJnd-jlc2L0KbsAsRW78wHnbuvDdp8LrGxq-PT7sO71vc-WyjgdwFn_BblxcYbN9v-pAs9sYHiNuUTZ-O0YEbxJ786hQ931w_Xd0Vs4fb-6vLWQFcVLkQqpWcG9lSQqG1HCoLQAU0TtjG0cZVLQgGZUsN1IoJUjrrZFURI2teKsWn6GzcXcfwurEp62XYRD-81EywmlNWsnJIsTEFMaQUrdPr2K1M3GpK9A6mHmHqAab-gan5UOJjKQ1hP7fxb_qf1jeT9nsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528312424</pqid></control><display><type>article</type><title>Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals</title><source>Springer Link</source><creator>Haque, Ejaz ; Shariatnia, Shadi ; Jeong, Tae-Joong ; Jarrahbashi, Dorrin ; Asadi, Amir ; Harris, Tequila ; Moon, Robert J. ; Kalaitzidou, Kyriaki</creator><creatorcontrib>Haque, Ejaz ; Shariatnia, Shadi ; Jeong, Tae-Joong ; Jarrahbashi, Dorrin ; Asadi, Amir ; Harris, Tequila ; Moon, Robert J. ; Kalaitzidou, Kyriaki</creatorcontrib><description>Two scalable coating techniques, slot die and spray coating (SC), are used to apply cellulose nanocrystals (CNCs) to the surface of glass fibers with the goal of enhancing interfacial interactions between glass fibers and epoxy and, consequently, the strength of fiber-reinforced composites. The quality of the cellulose coatings and the interfacial shear strength, assessed via the single fiber fragmentation test, are determined as a function of the method and conditions used to coat the fibers. In addition, a comparison with glass fibers coated with identical CNC formulations using a laboratory-scale dip coating (DC) technique is provided. Results from both scalable methods were found to be comparable or superior to the DC technique, with SC outperforming DC by up to 18% on average depending on the coating applied. Further analysis was conducted on coating morphology, fracture behavior, elemental composition, and surface loading. The observed differences can be used to determine which technique is most appropriate for a given application. This work demonstrates the viability in adapting existing, scalable processes for CNC glass fiber coatings and establishes key avenues for future process optimization.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-021-03829-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Coatings ; Composites ; Fiber coatings ; Fiber composites ; Fiber reinforced polymers ; Fibers ; Glass ; Glass fiber reinforced plastics ; Glass-epoxy composites ; Immersion coating ; Interfacial shear strength ; Morphology ; Nanocrystals ; Natural Materials ; Optimization ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Shear strength ; Sustainable Development</subject><ispartof>Cellulose (London), 2021-05, Vol.28 (8), p.4685-4700</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993</citedby><cites>FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993</cites><orcidid>0000-0002-1481-8589 ; 0000-0002-3174-362X ; 0000-0001-5977-8333 ; 0000-0002-1484-4058 ; 0000-0001-9526-0953 ; 0000-0001-8970-9224 ; 0000-0001-6999-6289 ; 0000-0002-6086-6987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Haque, Ejaz</creatorcontrib><creatorcontrib>Shariatnia, Shadi</creatorcontrib><creatorcontrib>Jeong, Tae-Joong</creatorcontrib><creatorcontrib>Jarrahbashi, Dorrin</creatorcontrib><creatorcontrib>Asadi, Amir</creatorcontrib><creatorcontrib>Harris, Tequila</creatorcontrib><creatorcontrib>Moon, Robert J.</creatorcontrib><creatorcontrib>Kalaitzidou, Kyriaki</creatorcontrib><title>Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Two scalable coating techniques, slot die and spray coating (SC), are used to apply cellulose nanocrystals (CNCs) to the surface of glass fibers with the goal of enhancing interfacial interactions between glass fibers and epoxy and, consequently, the strength of fiber-reinforced composites. The quality of the cellulose coatings and the interfacial shear strength, assessed via the single fiber fragmentation test, are determined as a function of the method and conditions used to coat the fibers. In addition, a comparison with glass fibers coated with identical CNC formulations using a laboratory-scale dip coating (DC) technique is provided. Results from both scalable methods were found to be comparable or superior to the DC technique, with SC outperforming DC by up to 18% on average depending on the coating applied. Further analysis was conducted on coating morphology, fracture behavior, elemental composition, and surface loading. The observed differences can be used to determine which technique is most appropriate for a given application. This work demonstrates the viability in adapting existing, scalable processes for CNC glass fiber coatings and establishes key avenues for future process optimization.</description><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coatings</subject><subject>Composites</subject><subject>Fiber coatings</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fibers</subject><subject>Glass</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass-epoxy composites</subject><subject>Immersion coating</subject><subject>Interfacial shear strength</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Natural Materials</subject><subject>Optimization</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Shear strength</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgejQ_k8lkKeIfFFyo4C5k7iTtlGlSkxTtznfwDX0Sp47gztWBc885Fz6ETik5p4TIi0SJkKQgjBaE10wVfA9NqJCsqGv2so8mRFVqOHN1iI5SWhJClGR0guARTG-a3mIIJnd-jlc2L0KbsAsRW78wHnbuvDdp8LrGxq-PT7sO71vc-WyjgdwFn_BblxcYbN9v-pAs9sYHiNuUTZ-O0YEbxJ786hQ931w_Xd0Vs4fb-6vLWQFcVLkQqpWcG9lSQqG1HCoLQAU0TtjG0cZVLQgGZUsN1IoJUjrrZFURI2teKsWn6GzcXcfwurEp62XYRD-81EywmlNWsnJIsTEFMaQUrdPr2K1M3GpK9A6mHmHqAab-gan5UOJjKQ1hP7fxb_qf1jeT9nsI</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Haque, Ejaz</creator><creator>Shariatnia, Shadi</creator><creator>Jeong, Tae-Joong</creator><creator>Jarrahbashi, Dorrin</creator><creator>Asadi, Amir</creator><creator>Harris, Tequila</creator><creator>Moon, Robert J.</creator><creator>Kalaitzidou, Kyriaki</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1481-8589</orcidid><orcidid>https://orcid.org/0000-0002-3174-362X</orcidid><orcidid>https://orcid.org/0000-0001-5977-8333</orcidid><orcidid>https://orcid.org/0000-0002-1484-4058</orcidid><orcidid>https://orcid.org/0000-0001-9526-0953</orcidid><orcidid>https://orcid.org/0000-0001-8970-9224</orcidid><orcidid>https://orcid.org/0000-0001-6999-6289</orcidid><orcidid>https://orcid.org/0000-0002-6086-6987</orcidid></search><sort><creationdate>20210501</creationdate><title>Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals</title><author>Haque, Ejaz ; Shariatnia, Shadi ; Jeong, Tae-Joong ; Jarrahbashi, Dorrin ; Asadi, Amir ; Harris, Tequila ; Moon, Robert J. ; Kalaitzidou, Kyriaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coatings</topic><topic>Composites</topic><topic>Fiber coatings</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fibers</topic><topic>Glass</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass-epoxy composites</topic><topic>Immersion coating</topic><topic>Interfacial shear strength</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Natural Materials</topic><topic>Optimization</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Shear strength</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haque, Ejaz</creatorcontrib><creatorcontrib>Shariatnia, Shadi</creatorcontrib><creatorcontrib>Jeong, Tae-Joong</creatorcontrib><creatorcontrib>Jarrahbashi, Dorrin</creatorcontrib><creatorcontrib>Asadi, Amir</creatorcontrib><creatorcontrib>Harris, Tequila</creatorcontrib><creatorcontrib>Moon, Robert J.</creatorcontrib><creatorcontrib>Kalaitzidou, Kyriaki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haque, Ejaz</au><au>Shariatnia, Shadi</au><au>Jeong, Tae-Joong</au><au>Jarrahbashi, Dorrin</au><au>Asadi, Amir</au><au>Harris, Tequila</au><au>Moon, Robert J.</au><au>Kalaitzidou, Kyriaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>28</volume><issue>8</issue><spage>4685</spage><epage>4700</epage><pages>4685-4700</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Two scalable coating techniques, slot die and spray coating (SC), are used to apply cellulose nanocrystals (CNCs) to the surface of glass fibers with the goal of enhancing interfacial interactions between glass fibers and epoxy and, consequently, the strength of fiber-reinforced composites. The quality of the cellulose coatings and the interfacial shear strength, assessed via the single fiber fragmentation test, are determined as a function of the method and conditions used to coat the fibers. In addition, a comparison with glass fibers coated with identical CNC formulations using a laboratory-scale dip coating (DC) technique is provided. Results from both scalable methods were found to be comparable or superior to the DC technique, with SC outperforming DC by up to 18% on average depending on the coating applied. Further analysis was conducted on coating morphology, fracture behavior, elemental composition, and surface loading. The observed differences can be used to determine which technique is most appropriate for a given application. This work demonstrates the viability in adapting existing, scalable processes for CNC glass fiber coatings and establishes key avenues for future process optimization.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-021-03829-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1481-8589</orcidid><orcidid>https://orcid.org/0000-0002-3174-362X</orcidid><orcidid>https://orcid.org/0000-0001-5977-8333</orcidid><orcidid>https://orcid.org/0000-0002-1484-4058</orcidid><orcidid>https://orcid.org/0000-0001-9526-0953</orcidid><orcidid>https://orcid.org/0000-0001-8970-9224</orcidid><orcidid>https://orcid.org/0000-0001-6999-6289</orcidid><orcidid>https://orcid.org/0000-0002-6086-6987</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2021-05, Vol.28 (8), p.4685-4700
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2528312424
source Springer Link
subjects Bioorganic Chemistry
Cellulose
Ceramics
Chemistry
Chemistry and Materials Science
Coatings
Composites
Fiber coatings
Fiber composites
Fiber reinforced polymers
Fibers
Glass
Glass fiber reinforced plastics
Glass-epoxy composites
Immersion coating
Interfacial shear strength
Morphology
Nanocrystals
Natural Materials
Optimization
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
Shear strength
Sustainable Development
title Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20coating%20methods%20for%20enhancing%20glass%20fiber%E2%80%93epoxy%20interactions%20with%20cellulose%20nanocrystals&rft.jtitle=Cellulose%20(London)&rft.au=Haque,%20Ejaz&rft.date=2021-05-01&rft.volume=28&rft.issue=8&rft.spage=4685&rft.epage=4700&rft.pages=4685-4700&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-021-03829-3&rft_dat=%3Cproquest_cross%3E2528312424%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528312424&rft_id=info:pmid/&rfr_iscdi=true