Loading…
Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals
Two scalable coating techniques, slot die and spray coating (SC), are used to apply cellulose nanocrystals (CNCs) to the surface of glass fibers with the goal of enhancing interfacial interactions between glass fibers and epoxy and, consequently, the strength of fiber-reinforced composites. The qual...
Saved in:
Published in: | Cellulose (London) 2021-05, Vol.28 (8), p.4685-4700 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993 |
container_end_page | 4700 |
container_issue | 8 |
container_start_page | 4685 |
container_title | Cellulose (London) |
container_volume | 28 |
creator | Haque, Ejaz Shariatnia, Shadi Jeong, Tae-Joong Jarrahbashi, Dorrin Asadi, Amir Harris, Tequila Moon, Robert J. Kalaitzidou, Kyriaki |
description | Two scalable coating techniques, slot die and spray coating (SC), are used to apply cellulose nanocrystals (CNCs) to the surface of glass fibers with the goal of enhancing interfacial interactions between glass fibers and epoxy and, consequently, the strength of fiber-reinforced composites. The quality of the cellulose coatings and the interfacial shear strength, assessed via the single fiber fragmentation test, are determined as a function of the method and conditions used to coat the fibers. In addition, a comparison with glass fibers coated with identical CNC formulations using a laboratory-scale dip coating (DC) technique is provided. Results from both scalable methods were found to be comparable or superior to the DC technique, with SC outperforming DC by up to 18% on average depending on the coating applied. Further analysis was conducted on coating morphology, fracture behavior, elemental composition, and surface loading. The observed differences can be used to determine which technique is most appropriate for a given application. This work demonstrates the viability in adapting existing, scalable processes for CNC glass fiber coatings and establishes key avenues for future process optimization. |
doi_str_mv | 10.1007/s10570-021-03829-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528312424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528312424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgejQ_k8lkKeIfFFyo4C5k7iTtlGlSkxTtznfwDX0Sp47gztWBc885Fz6ETik5p4TIi0SJkKQgjBaE10wVfA9NqJCsqGv2so8mRFVqOHN1iI5SWhJClGR0guARTG-a3mIIJnd-jlc2L0KbsAsRW78wHnbuvDdp8LrGxq-PT7sO71vc-WyjgdwFn_BblxcYbN9v-pAs9sYHiNuUTZ-O0YEbxJ786hQ931w_Xd0Vs4fb-6vLWQFcVLkQqpWcG9lSQqG1HCoLQAU0TtjG0cZVLQgGZUsN1IoJUjrrZFURI2teKsWn6GzcXcfwurEp62XYRD-81EywmlNWsnJIsTEFMaQUrdPr2K1M3GpK9A6mHmHqAab-gan5UOJjKQ1hP7fxb_qf1jeT9nsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528312424</pqid></control><display><type>article</type><title>Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals</title><source>Springer Link</source><creator>Haque, Ejaz ; Shariatnia, Shadi ; Jeong, Tae-Joong ; Jarrahbashi, Dorrin ; Asadi, Amir ; Harris, Tequila ; Moon, Robert J. ; Kalaitzidou, Kyriaki</creator><creatorcontrib>Haque, Ejaz ; Shariatnia, Shadi ; Jeong, Tae-Joong ; Jarrahbashi, Dorrin ; Asadi, Amir ; Harris, Tequila ; Moon, Robert J. ; Kalaitzidou, Kyriaki</creatorcontrib><description>Two scalable coating techniques, slot die and spray coating (SC), are used to apply cellulose nanocrystals (CNCs) to the surface of glass fibers with the goal of enhancing interfacial interactions between glass fibers and epoxy and, consequently, the strength of fiber-reinforced composites. The quality of the cellulose coatings and the interfacial shear strength, assessed via the single fiber fragmentation test, are determined as a function of the method and conditions used to coat the fibers. In addition, a comparison with glass fibers coated with identical CNC formulations using a laboratory-scale dip coating (DC) technique is provided. Results from both scalable methods were found to be comparable or superior to the DC technique, with SC outperforming DC by up to 18% on average depending on the coating applied. Further analysis was conducted on coating morphology, fracture behavior, elemental composition, and surface loading. The observed differences can be used to determine which technique is most appropriate for a given application. This work demonstrates the viability in adapting existing, scalable processes for CNC glass fiber coatings and establishes key avenues for future process optimization.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-021-03829-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Coatings ; Composites ; Fiber coatings ; Fiber composites ; Fiber reinforced polymers ; Fibers ; Glass ; Glass fiber reinforced plastics ; Glass-epoxy composites ; Immersion coating ; Interfacial shear strength ; Morphology ; Nanocrystals ; Natural Materials ; Optimization ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Shear strength ; Sustainable Development</subject><ispartof>Cellulose (London), 2021-05, Vol.28 (8), p.4685-4700</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993</citedby><cites>FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993</cites><orcidid>0000-0002-1481-8589 ; 0000-0002-3174-362X ; 0000-0001-5977-8333 ; 0000-0002-1484-4058 ; 0000-0001-9526-0953 ; 0000-0001-8970-9224 ; 0000-0001-6999-6289 ; 0000-0002-6086-6987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Haque, Ejaz</creatorcontrib><creatorcontrib>Shariatnia, Shadi</creatorcontrib><creatorcontrib>Jeong, Tae-Joong</creatorcontrib><creatorcontrib>Jarrahbashi, Dorrin</creatorcontrib><creatorcontrib>Asadi, Amir</creatorcontrib><creatorcontrib>Harris, Tequila</creatorcontrib><creatorcontrib>Moon, Robert J.</creatorcontrib><creatorcontrib>Kalaitzidou, Kyriaki</creatorcontrib><title>Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Two scalable coating techniques, slot die and spray coating (SC), are used to apply cellulose nanocrystals (CNCs) to the surface of glass fibers with the goal of enhancing interfacial interactions between glass fibers and epoxy and, consequently, the strength of fiber-reinforced composites. The quality of the cellulose coatings and the interfacial shear strength, assessed via the single fiber fragmentation test, are determined as a function of the method and conditions used to coat the fibers. In addition, a comparison with glass fibers coated with identical CNC formulations using a laboratory-scale dip coating (DC) technique is provided. Results from both scalable methods were found to be comparable or superior to the DC technique, with SC outperforming DC by up to 18% on average depending on the coating applied. Further analysis was conducted on coating morphology, fracture behavior, elemental composition, and surface loading. The observed differences can be used to determine which technique is most appropriate for a given application. This work demonstrates the viability in adapting existing, scalable processes for CNC glass fiber coatings and establishes key avenues for future process optimization.</description><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coatings</subject><subject>Composites</subject><subject>Fiber coatings</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fibers</subject><subject>Glass</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass-epoxy composites</subject><subject>Immersion coating</subject><subject>Interfacial shear strength</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Natural Materials</subject><subject>Optimization</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Shear strength</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgejQ_k8lkKeIfFFyo4C5k7iTtlGlSkxTtznfwDX0Sp47gztWBc885Fz6ETik5p4TIi0SJkKQgjBaE10wVfA9NqJCsqGv2so8mRFVqOHN1iI5SWhJClGR0guARTG-a3mIIJnd-jlc2L0KbsAsRW78wHnbuvDdp8LrGxq-PT7sO71vc-WyjgdwFn_BblxcYbN9v-pAs9sYHiNuUTZ-O0YEbxJ786hQ931w_Xd0Vs4fb-6vLWQFcVLkQqpWcG9lSQqG1HCoLQAU0TtjG0cZVLQgGZUsN1IoJUjrrZFURI2teKsWn6GzcXcfwurEp62XYRD-81EywmlNWsnJIsTEFMaQUrdPr2K1M3GpK9A6mHmHqAab-gan5UOJjKQ1hP7fxb_qf1jeT9nsI</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Haque, Ejaz</creator><creator>Shariatnia, Shadi</creator><creator>Jeong, Tae-Joong</creator><creator>Jarrahbashi, Dorrin</creator><creator>Asadi, Amir</creator><creator>Harris, Tequila</creator><creator>Moon, Robert J.</creator><creator>Kalaitzidou, Kyriaki</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1481-8589</orcidid><orcidid>https://orcid.org/0000-0002-3174-362X</orcidid><orcidid>https://orcid.org/0000-0001-5977-8333</orcidid><orcidid>https://orcid.org/0000-0002-1484-4058</orcidid><orcidid>https://orcid.org/0000-0001-9526-0953</orcidid><orcidid>https://orcid.org/0000-0001-8970-9224</orcidid><orcidid>https://orcid.org/0000-0001-6999-6289</orcidid><orcidid>https://orcid.org/0000-0002-6086-6987</orcidid></search><sort><creationdate>20210501</creationdate><title>Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals</title><author>Haque, Ejaz ; Shariatnia, Shadi ; Jeong, Tae-Joong ; Jarrahbashi, Dorrin ; Asadi, Amir ; Harris, Tequila ; Moon, Robert J. ; Kalaitzidou, Kyriaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coatings</topic><topic>Composites</topic><topic>Fiber coatings</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fibers</topic><topic>Glass</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass-epoxy composites</topic><topic>Immersion coating</topic><topic>Interfacial shear strength</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Natural Materials</topic><topic>Optimization</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Shear strength</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haque, Ejaz</creatorcontrib><creatorcontrib>Shariatnia, Shadi</creatorcontrib><creatorcontrib>Jeong, Tae-Joong</creatorcontrib><creatorcontrib>Jarrahbashi, Dorrin</creatorcontrib><creatorcontrib>Asadi, Amir</creatorcontrib><creatorcontrib>Harris, Tequila</creatorcontrib><creatorcontrib>Moon, Robert J.</creatorcontrib><creatorcontrib>Kalaitzidou, Kyriaki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haque, Ejaz</au><au>Shariatnia, Shadi</au><au>Jeong, Tae-Joong</au><au>Jarrahbashi, Dorrin</au><au>Asadi, Amir</au><au>Harris, Tequila</au><au>Moon, Robert J.</au><au>Kalaitzidou, Kyriaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>28</volume><issue>8</issue><spage>4685</spage><epage>4700</epage><pages>4685-4700</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Two scalable coating techniques, slot die and spray coating (SC), are used to apply cellulose nanocrystals (CNCs) to the surface of glass fibers with the goal of enhancing interfacial interactions between glass fibers and epoxy and, consequently, the strength of fiber-reinforced composites. The quality of the cellulose coatings and the interfacial shear strength, assessed via the single fiber fragmentation test, are determined as a function of the method and conditions used to coat the fibers. In addition, a comparison with glass fibers coated with identical CNC formulations using a laboratory-scale dip coating (DC) technique is provided. Results from both scalable methods were found to be comparable or superior to the DC technique, with SC outperforming DC by up to 18% on average depending on the coating applied. Further analysis was conducted on coating morphology, fracture behavior, elemental composition, and surface loading. The observed differences can be used to determine which technique is most appropriate for a given application. This work demonstrates the viability in adapting existing, scalable processes for CNC glass fiber coatings and establishes key avenues for future process optimization.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-021-03829-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1481-8589</orcidid><orcidid>https://orcid.org/0000-0002-3174-362X</orcidid><orcidid>https://orcid.org/0000-0001-5977-8333</orcidid><orcidid>https://orcid.org/0000-0002-1484-4058</orcidid><orcidid>https://orcid.org/0000-0001-9526-0953</orcidid><orcidid>https://orcid.org/0000-0001-8970-9224</orcidid><orcidid>https://orcid.org/0000-0001-6999-6289</orcidid><orcidid>https://orcid.org/0000-0002-6086-6987</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2021-05, Vol.28 (8), p.4685-4700 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2528312424 |
source | Springer Link |
subjects | Bioorganic Chemistry Cellulose Ceramics Chemistry Chemistry and Materials Science Coatings Composites Fiber coatings Fiber composites Fiber reinforced polymers Fibers Glass Glass fiber reinforced plastics Glass-epoxy composites Immersion coating Interfacial shear strength Morphology Nanocrystals Natural Materials Optimization Organic Chemistry Original Research Physical Chemistry Polymer Sciences Shear strength Sustainable Development |
title | Scalable coating methods for enhancing glass fiber–epoxy interactions with cellulose nanocrystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20coating%20methods%20for%20enhancing%20glass%20fiber%E2%80%93epoxy%20interactions%20with%20cellulose%20nanocrystals&rft.jtitle=Cellulose%20(London)&rft.au=Haque,%20Ejaz&rft.date=2021-05-01&rft.volume=28&rft.issue=8&rft.spage=4685&rft.epage=4700&rft.pages=4685-4700&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-021-03829-3&rft_dat=%3Cproquest_cross%3E2528312424%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-59d733a7d101cde3c6ecc15cbf5ebf1bf6dc52c4d1ac892504fef7660a7834993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528312424&rft_id=info:pmid/&rfr_iscdi=true |