Loading…

Trinil clean index of a ring

From the concepts of clean index of rings, nil clean index of rings, and weakly nil clean index of rings, we expand them by introducing the new concept, that is, trinil clean index of a ring. From any element a of a ring R with unity, we set τ( a ): ={ e ∈ R | e 3 = e and a − e ∈ Nil ( R )}, where N...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-05, Vol.1872 (1), p.12016
Main Authors: Mu’in, A, Irawati, S, Susanto, H, Agung, M, Marubayashi, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2396-6bf2fed96daf67ae232edd5722732eb81830befc4d52cf0259d90a4848f64cf53
container_end_page
container_issue 1
container_start_page 12016
container_title Journal of physics. Conference series
container_volume 1872
creator Mu’in, A
Irawati, S
Susanto, H
Agung, M
Marubayashi, H
description From the concepts of clean index of rings, nil clean index of rings, and weakly nil clean index of rings, we expand them by introducing the new concept, that is, trinil clean index of a ring. From any element a of a ring R with unity, we set τ( a ): ={ e ∈ R | e 3 = e and a − e ∈ Nil ( R )}, where Nil( R ) is the set of all nilpotent elements of R ; trinil clean index of R is defined by sup{|τ( a )|| a ∈ R } and it is denoted by Trinin(R) . In this article, it will be investigated some properties of trinil clean index of any ring, ring homomorphism, and direct product. Some applications of determining trinil clean index of integral domains are also provided. We also determined the trinil clean index of ℤ n .
doi_str_mv 10.1088/1742-6596/1872/1/012016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528496622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528496622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2396-6bf2fed96daf67ae232edd5722732eb81830befc4d52cf0259d90a4848f64cf53</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoPBAuea5PJ91EWXYUFL-s5pPmQLrVdExf035tSWY_OZYaZ997wHkI3BN8RrFRDJINacC0aoiQ0pMEEMBEnaHG8nB5npc7RRc47jGkpuUDX29QNXV-5Ptih6gYfvqoxVrYq67dLdBZtn8PVb1-i18eH7eqp3rysn1f3m9oB1aIWbYQYvBbeRiFtAArBey4BZJlaRRTFbYiOeQ4uYuDaa2yZYioK5iKnS3Q76-7T-HEI-dPsxkMayksDHBTTQgAUlJxRLo05pxDNPnXvNn0bgs0UhZlMmsmwmaIwxMxRFCadmd24_5P-j_UD_FZd-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528496622</pqid></control><display><type>article</type><title>Trinil clean index of a ring</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Mu’in, A ; Irawati, S ; Susanto, H ; Agung, M ; Marubayashi, H</creator><creatorcontrib>Mu’in, A ; Irawati, S ; Susanto, H ; Agung, M ; Marubayashi, H</creatorcontrib><description>From the concepts of clean index of rings, nil clean index of rings, and weakly nil clean index of rings, we expand them by introducing the new concept, that is, trinil clean index of a ring. From any element a of a ring R with unity, we set τ( a ): ={ e ∈ R | e 3 = e and a − e ∈ Nil ( R )}, where Nil( R ) is the set of all nilpotent elements of R ; trinil clean index of R is defined by sup{|τ( a )|| a ∈ R } and it is denoted by Trinin(R) . In this article, it will be investigated some properties of trinil clean index of any ring, ring homomorphism, and direct product. Some applications of determining trinil clean index of integral domains are also provided. We also determined the trinil clean index of ℤ n .</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1872/1/012016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Homomorphisms ; Physics</subject><ispartof>Journal of physics. Conference series, 2021-05, Vol.1872 (1), p.12016</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2396-6bf2fed96daf67ae232edd5722732eb81830befc4d52cf0259d90a4848f64cf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2528496622?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Mu’in, A</creatorcontrib><creatorcontrib>Irawati, S</creatorcontrib><creatorcontrib>Susanto, H</creatorcontrib><creatorcontrib>Agung, M</creatorcontrib><creatorcontrib>Marubayashi, H</creatorcontrib><title>Trinil clean index of a ring</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>From the concepts of clean index of rings, nil clean index of rings, and weakly nil clean index of rings, we expand them by introducing the new concept, that is, trinil clean index of a ring. From any element a of a ring R with unity, we set τ( a ): ={ e ∈ R | e 3 = e and a − e ∈ Nil ( R )}, where Nil( R ) is the set of all nilpotent elements of R ; trinil clean index of R is defined by sup{|τ( a )|| a ∈ R } and it is denoted by Trinin(R) . In this article, it will be investigated some properties of trinil clean index of any ring, ring homomorphism, and direct product. Some applications of determining trinil clean index of integral domains are also provided. We also determined the trinil clean index of ℤ n .</description><subject>Homomorphisms</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFUE1LxDAQDaLguvoPBAuea5PJ91EWXYUFL-s5pPmQLrVdExf035tSWY_OZYaZ997wHkI3BN8RrFRDJINacC0aoiQ0pMEEMBEnaHG8nB5npc7RRc47jGkpuUDX29QNXV-5Ptih6gYfvqoxVrYq67dLdBZtn8PVb1-i18eH7eqp3rysn1f3m9oB1aIWbYQYvBbeRiFtAArBey4BZJlaRRTFbYiOeQ4uYuDaa2yZYioK5iKnS3Q76-7T-HEI-dPsxkMayksDHBTTQgAUlJxRLo05pxDNPnXvNn0bgs0UhZlMmsmwmaIwxMxRFCadmd24_5P-j_UD_FZd-A</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Mu’in, A</creator><creator>Irawati, S</creator><creator>Susanto, H</creator><creator>Agung, M</creator><creator>Marubayashi, H</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210501</creationdate><title>Trinil clean index of a ring</title><author>Mu’in, A ; Irawati, S ; Susanto, H ; Agung, M ; Marubayashi, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2396-6bf2fed96daf67ae232edd5722732eb81830befc4d52cf0259d90a4848f64cf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Homomorphisms</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu’in, A</creatorcontrib><creatorcontrib>Irawati, S</creatorcontrib><creatorcontrib>Susanto, H</creatorcontrib><creatorcontrib>Agung, M</creatorcontrib><creatorcontrib>Marubayashi, H</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu’in, A</au><au>Irawati, S</au><au>Susanto, H</au><au>Agung, M</au><au>Marubayashi, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trinil clean index of a ring</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>1872</volume><issue>1</issue><spage>12016</spage><pages>12016-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>From the concepts of clean index of rings, nil clean index of rings, and weakly nil clean index of rings, we expand them by introducing the new concept, that is, trinil clean index of a ring. From any element a of a ring R with unity, we set τ( a ): ={ e ∈ R | e 3 = e and a − e ∈ Nil ( R )}, where Nil( R ) is the set of all nilpotent elements of R ; trinil clean index of R is defined by sup{|τ( a )|| a ∈ R } and it is denoted by Trinin(R) . In this article, it will be investigated some properties of trinil clean index of any ring, ring homomorphism, and direct product. Some applications of determining trinil clean index of integral domains are also provided. We also determined the trinil clean index of ℤ n .</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1872/1/012016</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-05, Vol.1872 (1), p.12016
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2528496622
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest)
subjects Homomorphisms
Physics
title Trinil clean index of a ring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trinil%20clean%20index%20of%20a%20ring&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Mu%E2%80%99in,%20A&rft.date=2021-05-01&rft.volume=1872&rft.issue=1&rft.spage=12016&rft.pages=12016-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1872/1/012016&rft_dat=%3Cproquest_cross%3E2528496622%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2396-6bf2fed96daf67ae232edd5722732eb81830befc4d52cf0259d90a4848f64cf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528496622&rft_id=info:pmid/&rfr_iscdi=true