Loading…

Essential stability in unified vector optimization

The emphasis of the paper is to examine the essential stability of efficient solutions for semicontinuous vector optimization problems, subject to the perturbation of objective function and feasible set. We obtain sufficient conditions for existence and characterization of essential efficient soluti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization 2021-05, Vol.80 (1), p.161-175
Main Authors: Kapoor, Shiva, Lalitha, C. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-4755e37a9ed56c0499cf830bac13a00679d061a710792700c11390c99b1c1f303
cites cdi_FETCH-LOGICAL-c358t-4755e37a9ed56c0499cf830bac13a00679d061a710792700c11390c99b1c1f303
container_end_page 175
container_issue 1
container_start_page 161
container_title Journal of global optimization
container_volume 80
creator Kapoor, Shiva
Lalitha, C. S.
description The emphasis of the paper is to examine the essential stability of efficient solutions for semicontinuous vector optimization problems, subject to the perturbation of objective function and feasible set. We obtain sufficient conditions for existence and characterization of essential efficient solutions, essential sets and essential components, where the efficient solutions are governed by an arbitrary preference relation in a real normed linear space. Further, we establish the density of the set of stable vector optimization problems in the sense of Baire category. We also exhibit that essential stability is weaker than examining continuity aspects of solution sets.
doi_str_mv 10.1007/s10898-021-00996-2
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2528635918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718396543</galeid><sourcerecordid>A718396543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-4755e37a9ed56c0499cf830bac13a00679d061a710792700c11390c99b1c1f303</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59SZpNlsjqXUDyh40XNIs9mSss3WJBXqrze6gjeZw8DwPDPDS8gtwgwB5H1CaFRDgSEFUKqm7IxMUEhOmcL6nExAMUEFAF6Sq5R2UKhGsAlhq5RcyN70Vcpm43ufT5UP1TH4zru2-nA2D7EaDtnv_afJfgjX5KIzfXI3v31K3h5Wr8snun55fF4u1tRy0WQ6l0I4Lo1yragtzJWyXcNhYyxyA1BL1UKNRiJIxSSAReQKrFIbtNhx4FNyN-49xOH96FLWu-EYQzmpmWBNzYXCplCzkdqa3mkfuiFHY0u1bu_tEFzny3whC6pqMedFYKNg45BSdJ0-RL838aQR9HeYegxTlzD1T5iaFYmPUipw2Lr498s_1hdlDXUv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528635918</pqid></control><display><type>article</type><title>Essential stability in unified vector optimization</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Kapoor, Shiva ; Lalitha, C. S.</creator><creatorcontrib>Kapoor, Shiva ; Lalitha, C. S.</creatorcontrib><description>The emphasis of the paper is to examine the essential stability of efficient solutions for semicontinuous vector optimization problems, subject to the perturbation of objective function and feasible set. We obtain sufficient conditions for existence and characterization of essential efficient solutions, essential sets and essential components, where the efficient solutions are governed by an arbitrary preference relation in a real normed linear space. Further, we establish the density of the set of stable vector optimization problems in the sense of Baire category. We also exhibit that essential stability is weaker than examining continuity aspects of solution sets.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-021-00996-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Perturbation ; Real Functions ; Stability</subject><ispartof>Journal of global optimization, 2021-05, Vol.80 (1), p.161-175</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-4755e37a9ed56c0499cf830bac13a00679d061a710792700c11390c99b1c1f303</citedby><cites>FETCH-LOGICAL-c358t-4755e37a9ed56c0499cf830bac13a00679d061a710792700c11390c99b1c1f303</cites><orcidid>0000-0002-6513-4275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2528635918/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2528635918?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,44344,74644</link.rule.ids></links><search><creatorcontrib>Kapoor, Shiva</creatorcontrib><creatorcontrib>Lalitha, C. S.</creatorcontrib><title>Essential stability in unified vector optimization</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>The emphasis of the paper is to examine the essential stability of efficient solutions for semicontinuous vector optimization problems, subject to the perturbation of objective function and feasible set. We obtain sufficient conditions for existence and characterization of essential efficient solutions, essential sets and essential components, where the efficient solutions are governed by an arbitrary preference relation in a real normed linear space. Further, we establish the density of the set of stable vector optimization problems in the sense of Baire category. We also exhibit that essential stability is weaker than examining continuity aspects of solution sets.</description><subject>Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Real Functions</subject><subject>Stability</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59SZpNlsjqXUDyh40XNIs9mSss3WJBXqrze6gjeZw8DwPDPDS8gtwgwB5H1CaFRDgSEFUKqm7IxMUEhOmcL6nExAMUEFAF6Sq5R2UKhGsAlhq5RcyN70Vcpm43ufT5UP1TH4zru2-nA2D7EaDtnv_afJfgjX5KIzfXI3v31K3h5Wr8snun55fF4u1tRy0WQ6l0I4Lo1yragtzJWyXcNhYyxyA1BL1UKNRiJIxSSAReQKrFIbtNhx4FNyN-49xOH96FLWu-EYQzmpmWBNzYXCplCzkdqa3mkfuiFHY0u1bu_tEFzny3whC6pqMedFYKNg45BSdJ0-RL838aQR9HeYegxTlzD1T5iaFYmPUipw2Lr498s_1hdlDXUv</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kapoor, Shiva</creator><creator>Lalitha, C. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6513-4275</orcidid></search><sort><creationdate>20210501</creationdate><title>Essential stability in unified vector optimization</title><author>Kapoor, Shiva ; Lalitha, C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-4755e37a9ed56c0499cf830bac13a00679d061a710792700c11390c99b1c1f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Real Functions</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapoor, Shiva</creatorcontrib><creatorcontrib>Lalitha, C. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapoor, Shiva</au><au>Lalitha, C. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential stability in unified vector optimization</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>80</volume><issue>1</issue><spage>161</spage><epage>175</epage><pages>161-175</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>The emphasis of the paper is to examine the essential stability of efficient solutions for semicontinuous vector optimization problems, subject to the perturbation of objective function and feasible set. We obtain sufficient conditions for existence and characterization of essential efficient solutions, essential sets and essential components, where the efficient solutions are governed by an arbitrary preference relation in a real normed linear space. Further, we establish the density of the set of stable vector optimization problems in the sense of Baire category. We also exhibit that essential stability is weaker than examining continuity aspects of solution sets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-021-00996-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6513-4275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2021-05, Vol.80 (1), p.161-175
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_2528635918
source ABI/INFORM Global; Springer Link
subjects Computer Science
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Perturbation
Real Functions
Stability
title Essential stability in unified vector optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20stability%20in%20unified%20vector%20optimization&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Kapoor,%20Shiva&rft.date=2021-05-01&rft.volume=80&rft.issue=1&rft.spage=161&rft.epage=175&rft.pages=161-175&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-021-00996-2&rft_dat=%3Cgale_proqu%3EA718396543%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-4755e37a9ed56c0499cf830bac13a00679d061a710792700c11390c99b1c1f303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528635918&rft_id=info:pmid/&rft_galeid=A718396543&rfr_iscdi=true