Loading…

Investigation on coupled vibration of machine tool table system with position deviations

The contact state and stiffness of linear guide are affected by the complex external loads, and the vibrations in different directions are coupled with each other. However, existing dynamic models are inaccurate because they ignore displacement coupling and do not consider the position deviation of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2021-06, Vol.114 (7-8), p.2321-2337
Main Authors: Liu, Chang, Zhao, Chunyu, Wen, Bangchun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The contact state and stiffness of linear guide are affected by the complex external loads, and the vibrations in different directions are coupled with each other. However, existing dynamic models are inaccurate because they ignore displacement coupling and do not consider the position deviation of guide rail. This paper presents a five degree-of-freedom dynamic model for table system that incorporates the effects of the displacement coupling and position deviation of guide rail. The ball-to-groove contact model and position deviation model are established by using the Hertz contact theory and homogeneous coordinate transformation, respectively. Dynamic equations are solved by combining the Monte Carlo and Newmark methods to determine the displacements of table system, and the accuracy of proposed dynamic model is verified through experimental method. The results show that the vibrations of table system are coupled with each other, and the position deviation of guide rail only affects the vibration amplitudes in the region other than the resonance regions. Proposed model is thus suitable for improving the machining accuracy and stability of machine tools.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-021-06874-1