Loading…

Construction of hexagonal nickel-cobalt oxide nanosheets on metal-organic frameworks based on MXene interlayer ion effect for hybrid supercapacitors

•Material synthesis is carried out the use of MXene interlayer functional groups.•At 1 A/g, the specific capacity is 855C g−1 (2137.5 F g−1).•The assembled supercapacitor achieves an outstanding electrochemical property. [Display omitted] Designing and adjusting materials with reasonable microscopic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2021-07, Vol.870, p.159466, Article 159466
Main Authors: Wang, Jiaheng, Gong, Jiaxu, Zhang, Huan, Lv, Linlin, Liu, Yuxing, Dai, Yatang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Material synthesis is carried out the use of MXene interlayer functional groups.•At 1 A/g, the specific capacity is 855C g−1 (2137.5 F g−1).•The assembled supercapacitor achieves an outstanding electrochemical property. [Display omitted] Designing and adjusting materials with reasonable microscopic morphology is the key to improving electrochemical performance and assembling hybrid supercapacitors with excellent performance. In this work, firstly, a hydrothermal method is used to grow the NiCo-MOF (NCM) on nickel foam, then NCM is used as the precursor, and the solution containing MXene and Ni2+ and Co2+ are used as the electrolyte to prepare the MXene-Ni-Co@NiCo-MOF/NF (M-NC@NCM/NF) nanosheets through electrodeposition. Since the metal cations will be redistributed between the MXene layers, the nanosheets obtained by electrodeposition in the electrolyte added with MXene exhibit a unique hexagonal nanosheet morphology. This unique form can enhance the electrochemical performance, the capacity retention rate can be maintained at 75.3% after 5000 cycles, and the specific capacity can reach 855.0 C g−1 (2137.5 F g−1) at 1 A g−1.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2021.159466