Loading…

Determination of application volume for coffee plantations using artificial neural networks and remote sensing

[Display omitted] •Spray volume determination for coffee plantation can be done remotely.•Proximal sensing associated with machine learning can access physical variables.•Multilayer perceptron outperformed radial basis function network. Methods for optimizing the application of phytosanitary product...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture 2021-05, Vol.184, p.106096, Article 106096
Main Authors: Oliveira, Mailson Freire de, Santos, Adão Felipe dos, Kazama, Elizabeth Haruna, Rolim, Glauco de Souza, Silva, Rouverson Pereira da
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-ff516b21ef80de9950226352210b4bfb1c948f167e79d76e4542748dbab6af9b3
cites cdi_FETCH-LOGICAL-c334t-ff516b21ef80de9950226352210b4bfb1c948f167e79d76e4542748dbab6af9b3
container_end_page
container_issue
container_start_page 106096
container_title Computers and electronics in agriculture
container_volume 184
creator Oliveira, Mailson Freire de
Santos, Adão Felipe dos
Kazama, Elizabeth Haruna
Rolim, Glauco de Souza
Silva, Rouverson Pereira da
description [Display omitted] •Spray volume determination for coffee plantation can be done remotely.•Proximal sensing associated with machine learning can access physical variables.•Multilayer perceptron outperformed radial basis function network. Methods for optimizing the application of phytosanitary products can be an alternative for sustainable agriculture. Such methods can be achieved with the use of artificial intelligence and remote sensing techniques. Our experiments were carried out in a commercial coffee plantation, where morphological variables (height and diameter) and vegetation indexes (normalized difference vegetation index, NDVI and normalized difference red edge, NDRE) were collected in the upper, medium, and lower thirds of the coffee plant. From the remote sensing data, experiments were developed to determine the best neural network topology, in terms of accuracy (RMSE) and precision (R2) and type (Multilayer Perceptron “MLP” and Radial Basis Function “RBF”), to estimate morphological variables. From these results, we evaluated the possibility of applying pesticides at a variable rate, using the tree row volume principle. The results show that, using remote sensing and artificial neural networks (MLP), it is possible to estimate coffee tree volume with reasonable accuracy. This can be done using a multi-layer perceptron model to estimate coffee tree height and diameter using vegetation indexes of different parts of the plant as input.
doi_str_mv 10.1016/j.compag.2021.106096
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528881088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169921001149</els_id><sourcerecordid>2528881088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ff516b21ef80de9950226352210b4bfb1c948f167e79d76e4542748dbab6af9b3</originalsourceid><addsrcrecordid>eNp9UE1PxCAUJEYT19V_4IHEc1dgWwoXE7N-Jpt40TOh9LFhbaEC1fjv7VrPnibz3sy8vEHokpIVJZRf71cm9IPerRhhdBpxIvkRWlBRs6KmpD5Gi0kmCsqlPEVnKe3JxKWoF8jfQYbYO6-zCx4Hi_UwdM7M9DN0Yw_YhohNsBYAD532-XeZ8Jic32Eds7POON1hD2P8hfwV4nvC2rc4Qh8y4AT-oD5HJ1Z3CS7-cIneHu5fN0_F9uXxeXO7Lcx6XebC2oryhlGwgrQgZUUY4-uKMUqasrENNbIUlvIaatnWHMqqZHUp2kY3XFvZrJfoas4dYvgYIWW1D2P000nFKiaEoESISVXOKhNDShGsGqLrdfxWlKhDs2qv5mbVoVk1NzvZbmYbTB98OogqGQfeQOsimKza4P4P-AHWaIWq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528881088</pqid></control><display><type>article</type><title>Determination of application volume for coffee plantations using artificial neural networks and remote sensing</title><source>Elsevier</source><creator>Oliveira, Mailson Freire de ; Santos, Adão Felipe dos ; Kazama, Elizabeth Haruna ; Rolim, Glauco de Souza ; Silva, Rouverson Pereira da</creator><creatorcontrib>Oliveira, Mailson Freire de ; Santos, Adão Felipe dos ; Kazama, Elizabeth Haruna ; Rolim, Glauco de Souza ; Silva, Rouverson Pereira da</creatorcontrib><description>[Display omitted] •Spray volume determination for coffee plantation can be done remotely.•Proximal sensing associated with machine learning can access physical variables.•Multilayer perceptron outperformed radial basis function network. Methods for optimizing the application of phytosanitary products can be an alternative for sustainable agriculture. Such methods can be achieved with the use of artificial intelligence and remote sensing techniques. Our experiments were carried out in a commercial coffee plantation, where morphological variables (height and diameter) and vegetation indexes (normalized difference vegetation index, NDVI and normalized difference red edge, NDRE) were collected in the upper, medium, and lower thirds of the coffee plant. From the remote sensing data, experiments were developed to determine the best neural network topology, in terms of accuracy (RMSE) and precision (R2) and type (Multilayer Perceptron “MLP” and Radial Basis Function “RBF”), to estimate morphological variables. From these results, we evaluated the possibility of applying pesticides at a variable rate, using the tree row volume principle. The results show that, using remote sensing and artificial neural networks (MLP), it is possible to estimate coffee tree volume with reasonable accuracy. This can be done using a multi-layer perceptron model to estimate coffee tree height and diameter using vegetation indexes of different parts of the plant as input.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2021.106096</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial intelligence ; Artificial neural networks ; Coffee ; Coffee canopy ; Digital agriculture ; Machine learning ; Morphology ; Multilayer perceptrons ; Network topologies ; Neural networks ; Normalized difference vegetative index ; Pesticides ; Plantations ; Radial basis function ; Remote sensing ; Variable rate spraying ; Vegetation ; Vegetation index</subject><ispartof>Computers and electronics in agriculture, 2021-05, Vol.184, p.106096, Article 106096</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ff516b21ef80de9950226352210b4bfb1c948f167e79d76e4542748dbab6af9b3</citedby><cites>FETCH-LOGICAL-c334t-ff516b21ef80de9950226352210b4bfb1c948f167e79d76e4542748dbab6af9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Oliveira, Mailson Freire de</creatorcontrib><creatorcontrib>Santos, Adão Felipe dos</creatorcontrib><creatorcontrib>Kazama, Elizabeth Haruna</creatorcontrib><creatorcontrib>Rolim, Glauco de Souza</creatorcontrib><creatorcontrib>Silva, Rouverson Pereira da</creatorcontrib><title>Determination of application volume for coffee plantations using artificial neural networks and remote sensing</title><title>Computers and electronics in agriculture</title><description>[Display omitted] •Spray volume determination for coffee plantation can be done remotely.•Proximal sensing associated with machine learning can access physical variables.•Multilayer perceptron outperformed radial basis function network. Methods for optimizing the application of phytosanitary products can be an alternative for sustainable agriculture. Such methods can be achieved with the use of artificial intelligence and remote sensing techniques. Our experiments were carried out in a commercial coffee plantation, where morphological variables (height and diameter) and vegetation indexes (normalized difference vegetation index, NDVI and normalized difference red edge, NDRE) were collected in the upper, medium, and lower thirds of the coffee plant. From the remote sensing data, experiments were developed to determine the best neural network topology, in terms of accuracy (RMSE) and precision (R2) and type (Multilayer Perceptron “MLP” and Radial Basis Function “RBF”), to estimate morphological variables. From these results, we evaluated the possibility of applying pesticides at a variable rate, using the tree row volume principle. The results show that, using remote sensing and artificial neural networks (MLP), it is possible to estimate coffee tree volume with reasonable accuracy. This can be done using a multi-layer perceptron model to estimate coffee tree height and diameter using vegetation indexes of different parts of the plant as input.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Coffee</subject><subject>Coffee canopy</subject><subject>Digital agriculture</subject><subject>Machine learning</subject><subject>Morphology</subject><subject>Multilayer perceptrons</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Normalized difference vegetative index</subject><subject>Pesticides</subject><subject>Plantations</subject><subject>Radial basis function</subject><subject>Remote sensing</subject><subject>Variable rate spraying</subject><subject>Vegetation</subject><subject>Vegetation index</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PxCAUJEYT19V_4IHEc1dgWwoXE7N-Jpt40TOh9LFhbaEC1fjv7VrPnibz3sy8vEHokpIVJZRf71cm9IPerRhhdBpxIvkRWlBRs6KmpD5Gi0kmCsqlPEVnKe3JxKWoF8jfQYbYO6-zCx4Hi_UwdM7M9DN0Yw_YhohNsBYAD532-XeZ8Jic32Eds7POON1hD2P8hfwV4nvC2rc4Qh8y4AT-oD5HJ1Z3CS7-cIneHu5fN0_F9uXxeXO7Lcx6XebC2oryhlGwgrQgZUUY4-uKMUqasrENNbIUlvIaatnWHMqqZHUp2kY3XFvZrJfoas4dYvgYIWW1D2P000nFKiaEoESISVXOKhNDShGsGqLrdfxWlKhDs2qv5mbVoVk1NzvZbmYbTB98OogqGQfeQOsimKza4P4P-AHWaIWq</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Oliveira, Mailson Freire de</creator><creator>Santos, Adão Felipe dos</creator><creator>Kazama, Elizabeth Haruna</creator><creator>Rolim, Glauco de Souza</creator><creator>Silva, Rouverson Pereira da</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202105</creationdate><title>Determination of application volume for coffee plantations using artificial neural networks and remote sensing</title><author>Oliveira, Mailson Freire de ; Santos, Adão Felipe dos ; Kazama, Elizabeth Haruna ; Rolim, Glauco de Souza ; Silva, Rouverson Pereira da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ff516b21ef80de9950226352210b4bfb1c948f167e79d76e4542748dbab6af9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Coffee</topic><topic>Coffee canopy</topic><topic>Digital agriculture</topic><topic>Machine learning</topic><topic>Morphology</topic><topic>Multilayer perceptrons</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Normalized difference vegetative index</topic><topic>Pesticides</topic><topic>Plantations</topic><topic>Radial basis function</topic><topic>Remote sensing</topic><topic>Variable rate spraying</topic><topic>Vegetation</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Mailson Freire de</creatorcontrib><creatorcontrib>Santos, Adão Felipe dos</creatorcontrib><creatorcontrib>Kazama, Elizabeth Haruna</creatorcontrib><creatorcontrib>Rolim, Glauco de Souza</creatorcontrib><creatorcontrib>Silva, Rouverson Pereira da</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, Mailson Freire de</au><au>Santos, Adão Felipe dos</au><au>Kazama, Elizabeth Haruna</au><au>Rolim, Glauco de Souza</au><au>Silva, Rouverson Pereira da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of application volume for coffee plantations using artificial neural networks and remote sensing</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2021-05</date><risdate>2021</risdate><volume>184</volume><spage>106096</spage><pages>106096-</pages><artnum>106096</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>[Display omitted] •Spray volume determination for coffee plantation can be done remotely.•Proximal sensing associated with machine learning can access physical variables.•Multilayer perceptron outperformed radial basis function network. Methods for optimizing the application of phytosanitary products can be an alternative for sustainable agriculture. Such methods can be achieved with the use of artificial intelligence and remote sensing techniques. Our experiments were carried out in a commercial coffee plantation, where morphological variables (height and diameter) and vegetation indexes (normalized difference vegetation index, NDVI and normalized difference red edge, NDRE) were collected in the upper, medium, and lower thirds of the coffee plant. From the remote sensing data, experiments were developed to determine the best neural network topology, in terms of accuracy (RMSE) and precision (R2) and type (Multilayer Perceptron “MLP” and Radial Basis Function “RBF”), to estimate morphological variables. From these results, we evaluated the possibility of applying pesticides at a variable rate, using the tree row volume principle. The results show that, using remote sensing and artificial neural networks (MLP), it is possible to estimate coffee tree volume with reasonable accuracy. This can be done using a multi-layer perceptron model to estimate coffee tree height and diameter using vegetation indexes of different parts of the plant as input.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2021.106096</doi></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2021-05, Vol.184, p.106096, Article 106096
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_journals_2528881088
source Elsevier
subjects Artificial intelligence
Artificial neural networks
Coffee
Coffee canopy
Digital agriculture
Machine learning
Morphology
Multilayer perceptrons
Network topologies
Neural networks
Normalized difference vegetative index
Pesticides
Plantations
Radial basis function
Remote sensing
Variable rate spraying
Vegetation
Vegetation index
title Determination of application volume for coffee plantations using artificial neural networks and remote sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20application%20volume%20for%20coffee%20plantations%20using%20artificial%20neural%20networks%20and%20remote%20sensing&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Oliveira,%20Mailson%20Freire%20de&rft.date=2021-05&rft.volume=184&rft.spage=106096&rft.pages=106096-&rft.artnum=106096&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2021.106096&rft_dat=%3Cproquest_cross%3E2528881088%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-ff516b21ef80de9950226352210b4bfb1c948f167e79d76e4542748dbab6af9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528881088&rft_id=info:pmid/&rfr_iscdi=true