Loading…

Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries

AbstractIn this work, an implicit finite-volume-element (FVE) method is extended to efficiently simulate the vortical structure of unsteady turbulent flows in domains with moving meshes. The arbitrary Lagrangian-Eulerian (ALE) approach is used to consider the motion of a hybrid mesh distributed in t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of aerospace engineering 2021-09, Vol.34 (5)
Main Authors: Darbandi, Masoud, Naderi, Alireza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3
cites cdi_FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3
container_end_page
container_issue 5
container_start_page
container_title Journal of aerospace engineering
container_volume 34
creator Darbandi, Masoud
Naderi, Alireza
description AbstractIn this work, an implicit finite-volume-element (FVE) method is extended to efficiently simulate the vortical structure of unsteady turbulent flows in domains with moving meshes. The arbitrary Lagrangian-Eulerian (ALE) approach is used to consider the motion of a hybrid mesh distributed in the solution domain. Conventional turbulence models are applied to simply confirm the sample achieved efficiency and accuracy in solving complex turbulent flow domains with moving boundaries. In this regard, the advective terms in the Navier-Stokes equations, including those in the transport equations for the applied turbulence models, are treated in a rather innovative manner. In other words, an advanced physical influence scheme (PIS) is suitably introduced in the context of extended ALE formulations. The accuracy and efficiency of the extended method are carefully evaluated by simulating various turbulent flows, including the fluid flow in stationary domains, separated turbulent flow over a bluff body problem, and the dynamic stall of fluid flow over a flapping airfoil. Comparing the current solutions with experimental data, it is shown that the current PIS-ALE method provides better accuracy and efficiency than those of past numerical methods, which used similar turbulence models in their algorithms.
doi_str_mv 10.1061/(ASCE)AS.1943-5525.0001279
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529091819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529091819</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3</originalsourceid><addsrcrecordid>eNp1kF9PwyAUxYnRxDn9DkRf9KET6F98q7PTJVs06XwmtAXH0pZZqNNvL82mPvkC4XLOuff-ALjEaIJRhG-v03ya3aT5BNPA98KQhBOEECYxPQKj39oxGKGE-h72CT4FZ8ZsnCaIKBkBlX1a0VaigvNmW6tSWfgyz710kcGlsGtdQathJqX7Ea2FuWr6mlulW6glXPVd0ddDfVbrHXzQDVetgTtl13CpP1T7Bu9131a8U8KcgxPJayMuDvcYvM6y1fTJWzw_zqfpwuO-H1tPkAjJMiFlhQviBqYF5pJwH4dVgPyYR0FRVAEnbn2a4DKO3RsFhSCEBqGU0h-Dq33uttPvvTCWbXTfta4lIyGhiOIEU6e626vKThvTCcm2nWp498UwYgNaxga07mADRjZgZAe0zhztzdyU4i_-x_m_8RuDxn0e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529091819</pqid></control><display><type>article</type><title>Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries</title><source>ASCE Online Journals</source><creator>Darbandi, Masoud ; Naderi, Alireza</creator><creatorcontrib>Darbandi, Masoud ; Naderi, Alireza</creatorcontrib><description>AbstractIn this work, an implicit finite-volume-element (FVE) method is extended to efficiently simulate the vortical structure of unsteady turbulent flows in domains with moving meshes. The arbitrary Lagrangian-Eulerian (ALE) approach is used to consider the motion of a hybrid mesh distributed in the solution domain. Conventional turbulence models are applied to simply confirm the sample achieved efficiency and accuracy in solving complex turbulent flow domains with moving boundaries. In this regard, the advective terms in the Navier-Stokes equations, including those in the transport equations for the applied turbulence models, are treated in a rather innovative manner. In other words, an advanced physical influence scheme (PIS) is suitably introduced in the context of extended ALE formulations. The accuracy and efficiency of the extended method are carefully evaluated by simulating various turbulent flows, including the fluid flow in stationary domains, separated turbulent flow over a bluff body problem, and the dynamic stall of fluid flow over a flapping airfoil. Comparing the current solutions with experimental data, it is shown that the current PIS-ALE method provides better accuracy and efficiency than those of past numerical methods, which used similar turbulence models in their algorithms.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/(ASCE)AS.1943-5525.0001279</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Accuracy ; Aerodynamics ; Algorithms ; Boundaries ; Computational fluid dynamics ; Domains ; Efficiency ; Finite element method ; Flapping ; Fluid flow ; Numerical methods ; Simulation ; Technical Papers ; Transport equations ; Turbulence models ; Turbulent flow</subject><ispartof>Journal of aerospace engineering, 2021-09, Vol.34 (5)</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3</citedby><cites>FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3</cites><orcidid>0000-0003-3361-2743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)AS.1943-5525.0001279$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0001279$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,777,781,3239,10049,27905,27906,75940,75948</link.rule.ids></links><search><creatorcontrib>Darbandi, Masoud</creatorcontrib><creatorcontrib>Naderi, Alireza</creatorcontrib><title>Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries</title><title>Journal of aerospace engineering</title><description>AbstractIn this work, an implicit finite-volume-element (FVE) method is extended to efficiently simulate the vortical structure of unsteady turbulent flows in domains with moving meshes. The arbitrary Lagrangian-Eulerian (ALE) approach is used to consider the motion of a hybrid mesh distributed in the solution domain. Conventional turbulence models are applied to simply confirm the sample achieved efficiency and accuracy in solving complex turbulent flow domains with moving boundaries. In this regard, the advective terms in the Navier-Stokes equations, including those in the transport equations for the applied turbulence models, are treated in a rather innovative manner. In other words, an advanced physical influence scheme (PIS) is suitably introduced in the context of extended ALE formulations. The accuracy and efficiency of the extended method are carefully evaluated by simulating various turbulent flows, including the fluid flow in stationary domains, separated turbulent flow over a bluff body problem, and the dynamic stall of fluid flow over a flapping airfoil. Comparing the current solutions with experimental data, it is shown that the current PIS-ALE method provides better accuracy and efficiency than those of past numerical methods, which used similar turbulence models in their algorithms.</description><subject>Accuracy</subject><subject>Aerodynamics</subject><subject>Algorithms</subject><subject>Boundaries</subject><subject>Computational fluid dynamics</subject><subject>Domains</subject><subject>Efficiency</subject><subject>Finite element method</subject><subject>Flapping</subject><subject>Fluid flow</subject><subject>Numerical methods</subject><subject>Simulation</subject><subject>Technical Papers</subject><subject>Transport equations</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kF9PwyAUxYnRxDn9DkRf9KET6F98q7PTJVs06XwmtAXH0pZZqNNvL82mPvkC4XLOuff-ALjEaIJRhG-v03ya3aT5BNPA98KQhBOEECYxPQKj39oxGKGE-h72CT4FZ8ZsnCaIKBkBlX1a0VaigvNmW6tSWfgyz710kcGlsGtdQathJqX7Ea2FuWr6mlulW6glXPVd0ddDfVbrHXzQDVetgTtl13CpP1T7Bu9131a8U8KcgxPJayMuDvcYvM6y1fTJWzw_zqfpwuO-H1tPkAjJMiFlhQviBqYF5pJwH4dVgPyYR0FRVAEnbn2a4DKO3RsFhSCEBqGU0h-Dq33uttPvvTCWbXTfta4lIyGhiOIEU6e626vKThvTCcm2nWp498UwYgNaxga07mADRjZgZAe0zhztzdyU4i_-x_m_8RuDxn0e</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Darbandi, Masoud</creator><creator>Naderi, Alireza</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3361-2743</orcidid></search><sort><creationdate>20210901</creationdate><title>Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries</title><author>Darbandi, Masoud ; Naderi, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Aerodynamics</topic><topic>Algorithms</topic><topic>Boundaries</topic><topic>Computational fluid dynamics</topic><topic>Domains</topic><topic>Efficiency</topic><topic>Finite element method</topic><topic>Flapping</topic><topic>Fluid flow</topic><topic>Numerical methods</topic><topic>Simulation</topic><topic>Technical Papers</topic><topic>Transport equations</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darbandi, Masoud</creatorcontrib><creatorcontrib>Naderi, Alireza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darbandi, Masoud</au><au>Naderi, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>34</volume><issue>5</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractIn this work, an implicit finite-volume-element (FVE) method is extended to efficiently simulate the vortical structure of unsteady turbulent flows in domains with moving meshes. The arbitrary Lagrangian-Eulerian (ALE) approach is used to consider the motion of a hybrid mesh distributed in the solution domain. Conventional turbulence models are applied to simply confirm the sample achieved efficiency and accuracy in solving complex turbulent flow domains with moving boundaries. In this regard, the advective terms in the Navier-Stokes equations, including those in the transport equations for the applied turbulence models, are treated in a rather innovative manner. In other words, an advanced physical influence scheme (PIS) is suitably introduced in the context of extended ALE formulations. The accuracy and efficiency of the extended method are carefully evaluated by simulating various turbulent flows, including the fluid flow in stationary domains, separated turbulent flow over a bluff body problem, and the dynamic stall of fluid flow over a flapping airfoil. Comparing the current solutions with experimental data, it is shown that the current PIS-ALE method provides better accuracy and efficiency than those of past numerical methods, which used similar turbulence models in their algorithms.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)AS.1943-5525.0001279</doi><orcidid>https://orcid.org/0000-0003-3361-2743</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-1321
ispartof Journal of aerospace engineering, 2021-09, Vol.34 (5)
issn 0893-1321
1943-5525
language eng
recordid cdi_proquest_journals_2529091819
source ASCE Online Journals
subjects Accuracy
Aerodynamics
Algorithms
Boundaries
Computational fluid dynamics
Domains
Efficiency
Finite element method
Flapping
Fluid flow
Numerical methods
Simulation
Technical Papers
Transport equations
Turbulence models
Turbulent flow
title Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Implicit%20PIS-ALE%20Method%20to%20Efficient%20Simulation%20of%20Turbulent%20Flow%20Domains%20with%20Moving%20Boundaries&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Darbandi,%20Masoud&rft.date=2021-09-01&rft.volume=34&rft.issue=5&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/(ASCE)AS.1943-5525.0001279&rft_dat=%3Cproquest_cross%3E2529091819%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2529091819&rft_id=info:pmid/&rfr_iscdi=true