Loading…
Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries
AbstractIn this work, an implicit finite-volume-element (FVE) method is extended to efficiently simulate the vortical structure of unsteady turbulent flows in domains with moving meshes. The arbitrary Lagrangian-Eulerian (ALE) approach is used to consider the motion of a hybrid mesh distributed in t...
Saved in:
Published in: | Journal of aerospace engineering 2021-09, Vol.34 (5) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3 |
---|---|
cites | cdi_FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Journal of aerospace engineering |
container_volume | 34 |
creator | Darbandi, Masoud Naderi, Alireza |
description | AbstractIn this work, an implicit finite-volume-element (FVE) method is extended to efficiently simulate the vortical structure of unsteady turbulent flows in domains with moving meshes. The arbitrary Lagrangian-Eulerian (ALE) approach is used to consider the motion of a hybrid mesh distributed in the solution domain. Conventional turbulence models are applied to simply confirm the sample achieved efficiency and accuracy in solving complex turbulent flow domains with moving boundaries. In this regard, the advective terms in the Navier-Stokes equations, including those in the transport equations for the applied turbulence models, are treated in a rather innovative manner. In other words, an advanced physical influence scheme (PIS) is suitably introduced in the context of extended ALE formulations. The accuracy and efficiency of the extended method are carefully evaluated by simulating various turbulent flows, including the fluid flow in stationary domains, separated turbulent flow over a bluff body problem, and the dynamic stall of fluid flow over a flapping airfoil. Comparing the current solutions with experimental data, it is shown that the current PIS-ALE method provides better accuracy and efficiency than those of past numerical methods, which used similar turbulence models in their algorithms. |
doi_str_mv | 10.1061/(ASCE)AS.1943-5525.0001279 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529091819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529091819</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3</originalsourceid><addsrcrecordid>eNp1kF9PwyAUxYnRxDn9DkRf9KET6F98q7PTJVs06XwmtAXH0pZZqNNvL82mPvkC4XLOuff-ALjEaIJRhG-v03ya3aT5BNPA98KQhBOEECYxPQKj39oxGKGE-h72CT4FZ8ZsnCaIKBkBlX1a0VaigvNmW6tSWfgyz710kcGlsGtdQathJqX7Ea2FuWr6mlulW6glXPVd0ddDfVbrHXzQDVetgTtl13CpP1T7Bu9131a8U8KcgxPJayMuDvcYvM6y1fTJWzw_zqfpwuO-H1tPkAjJMiFlhQviBqYF5pJwH4dVgPyYR0FRVAEnbn2a4DKO3RsFhSCEBqGU0h-Dq33uttPvvTCWbXTfta4lIyGhiOIEU6e626vKThvTCcm2nWp498UwYgNaxga07mADRjZgZAe0zhztzdyU4i_-x_m_8RuDxn0e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529091819</pqid></control><display><type>article</type><title>Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries</title><source>ASCE Online Journals</source><creator>Darbandi, Masoud ; Naderi, Alireza</creator><creatorcontrib>Darbandi, Masoud ; Naderi, Alireza</creatorcontrib><description>AbstractIn this work, an implicit finite-volume-element (FVE) method is extended to efficiently simulate the vortical structure of unsteady turbulent flows in domains with moving meshes. The arbitrary Lagrangian-Eulerian (ALE) approach is used to consider the motion of a hybrid mesh distributed in the solution domain. Conventional turbulence models are applied to simply confirm the sample achieved efficiency and accuracy in solving complex turbulent flow domains with moving boundaries. In this regard, the advective terms in the Navier-Stokes equations, including those in the transport equations for the applied turbulence models, are treated in a rather innovative manner. In other words, an advanced physical influence scheme (PIS) is suitably introduced in the context of extended ALE formulations. The accuracy and efficiency of the extended method are carefully evaluated by simulating various turbulent flows, including the fluid flow in stationary domains, separated turbulent flow over a bluff body problem, and the dynamic stall of fluid flow over a flapping airfoil. Comparing the current solutions with experimental data, it is shown that the current PIS-ALE method provides better accuracy and efficiency than those of past numerical methods, which used similar turbulence models in their algorithms.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/(ASCE)AS.1943-5525.0001279</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Accuracy ; Aerodynamics ; Algorithms ; Boundaries ; Computational fluid dynamics ; Domains ; Efficiency ; Finite element method ; Flapping ; Fluid flow ; Numerical methods ; Simulation ; Technical Papers ; Transport equations ; Turbulence models ; Turbulent flow</subject><ispartof>Journal of aerospace engineering, 2021-09, Vol.34 (5)</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3</citedby><cites>FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3</cites><orcidid>0000-0003-3361-2743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)AS.1943-5525.0001279$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0001279$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,777,781,3239,10049,27905,27906,75940,75948</link.rule.ids></links><search><creatorcontrib>Darbandi, Masoud</creatorcontrib><creatorcontrib>Naderi, Alireza</creatorcontrib><title>Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries</title><title>Journal of aerospace engineering</title><description>AbstractIn this work, an implicit finite-volume-element (FVE) method is extended to efficiently simulate the vortical structure of unsteady turbulent flows in domains with moving meshes. The arbitrary Lagrangian-Eulerian (ALE) approach is used to consider the motion of a hybrid mesh distributed in the solution domain. Conventional turbulence models are applied to simply confirm the sample achieved efficiency and accuracy in solving complex turbulent flow domains with moving boundaries. In this regard, the advective terms in the Navier-Stokes equations, including those in the transport equations for the applied turbulence models, are treated in a rather innovative manner. In other words, an advanced physical influence scheme (PIS) is suitably introduced in the context of extended ALE formulations. The accuracy and efficiency of the extended method are carefully evaluated by simulating various turbulent flows, including the fluid flow in stationary domains, separated turbulent flow over a bluff body problem, and the dynamic stall of fluid flow over a flapping airfoil. Comparing the current solutions with experimental data, it is shown that the current PIS-ALE method provides better accuracy and efficiency than those of past numerical methods, which used similar turbulence models in their algorithms.</description><subject>Accuracy</subject><subject>Aerodynamics</subject><subject>Algorithms</subject><subject>Boundaries</subject><subject>Computational fluid dynamics</subject><subject>Domains</subject><subject>Efficiency</subject><subject>Finite element method</subject><subject>Flapping</subject><subject>Fluid flow</subject><subject>Numerical methods</subject><subject>Simulation</subject><subject>Technical Papers</subject><subject>Transport equations</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kF9PwyAUxYnRxDn9DkRf9KET6F98q7PTJVs06XwmtAXH0pZZqNNvL82mPvkC4XLOuff-ALjEaIJRhG-v03ya3aT5BNPA98KQhBOEECYxPQKj39oxGKGE-h72CT4FZ8ZsnCaIKBkBlX1a0VaigvNmW6tSWfgyz710kcGlsGtdQathJqX7Ea2FuWr6mlulW6glXPVd0ddDfVbrHXzQDVetgTtl13CpP1T7Bu9131a8U8KcgxPJayMuDvcYvM6y1fTJWzw_zqfpwuO-H1tPkAjJMiFlhQviBqYF5pJwH4dVgPyYR0FRVAEnbn2a4DKO3RsFhSCEBqGU0h-Dq33uttPvvTCWbXTfta4lIyGhiOIEU6e626vKThvTCcm2nWp498UwYgNaxga07mADRjZgZAe0zhztzdyU4i_-x_m_8RuDxn0e</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Darbandi, Masoud</creator><creator>Naderi, Alireza</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3361-2743</orcidid></search><sort><creationdate>20210901</creationdate><title>Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries</title><author>Darbandi, Masoud ; Naderi, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Aerodynamics</topic><topic>Algorithms</topic><topic>Boundaries</topic><topic>Computational fluid dynamics</topic><topic>Domains</topic><topic>Efficiency</topic><topic>Finite element method</topic><topic>Flapping</topic><topic>Fluid flow</topic><topic>Numerical methods</topic><topic>Simulation</topic><topic>Technical Papers</topic><topic>Transport equations</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darbandi, Masoud</creatorcontrib><creatorcontrib>Naderi, Alireza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darbandi, Masoud</au><au>Naderi, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>34</volume><issue>5</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractIn this work, an implicit finite-volume-element (FVE) method is extended to efficiently simulate the vortical structure of unsteady turbulent flows in domains with moving meshes. The arbitrary Lagrangian-Eulerian (ALE) approach is used to consider the motion of a hybrid mesh distributed in the solution domain. Conventional turbulence models are applied to simply confirm the sample achieved efficiency and accuracy in solving complex turbulent flow domains with moving boundaries. In this regard, the advective terms in the Navier-Stokes equations, including those in the transport equations for the applied turbulence models, are treated in a rather innovative manner. In other words, an advanced physical influence scheme (PIS) is suitably introduced in the context of extended ALE formulations. The accuracy and efficiency of the extended method are carefully evaluated by simulating various turbulent flows, including the fluid flow in stationary domains, separated turbulent flow over a bluff body problem, and the dynamic stall of fluid flow over a flapping airfoil. Comparing the current solutions with experimental data, it is shown that the current PIS-ALE method provides better accuracy and efficiency than those of past numerical methods, which used similar turbulence models in their algorithms.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)AS.1943-5525.0001279</doi><orcidid>https://orcid.org/0000-0003-3361-2743</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-1321 |
ispartof | Journal of aerospace engineering, 2021-09, Vol.34 (5) |
issn | 0893-1321 1943-5525 |
language | eng |
recordid | cdi_proquest_journals_2529091819 |
source | ASCE Online Journals |
subjects | Accuracy Aerodynamics Algorithms Boundaries Computational fluid dynamics Domains Efficiency Finite element method Flapping Fluid flow Numerical methods Simulation Technical Papers Transport equations Turbulence models Turbulent flow |
title | Extended Implicit PIS-ALE Method to Efficient Simulation of Turbulent Flow Domains with Moving Boundaries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Implicit%20PIS-ALE%20Method%20to%20Efficient%20Simulation%20of%20Turbulent%20Flow%20Domains%20with%20Moving%20Boundaries&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Darbandi,%20Masoud&rft.date=2021-09-01&rft.volume=34&rft.issue=5&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/(ASCE)AS.1943-5525.0001279&rft_dat=%3Cproquest_cross%3E2529091819%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-e260fc82cd1b21329b1af2a315d4037a64bbd4a2106981c774bb04be22945fff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2529091819&rft_id=info:pmid/&rfr_iscdi=true |