Loading…

Design, Analytical and Experimental Evaluations of Additive Manufacturing for Laser Melting of Polymer-Metal Colloids

This paper presents a novel additive manufacturing process, namely the laser melting of polymer-metal colloids (LMC), which is advantageous for repairing features and reducing contamination sources. The developed polymer-metal colloids are conveyed via the designed spindle-driven dispensing system t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of precision engineering and manufacturing 2021-06, Vol.22 (6), p.1081-1096
Main Authors: Kuo, Chunliang, Chang, Tingyu, Liu, Jhihjie, Chung, Chunhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a novel additive manufacturing process, namely the laser melting of polymer-metal colloids (LMC), which is advantageous for repairing features and reducing contamination sources. The developed polymer-metal colloids are conveyed via the designed spindle-driven dispensing system to demonstrate consolidations of the metallic phase onto heterogeneous substrate materials via laser melting. Modelling of the flow rate, velocity and pressure fields is linked to the geometric design of the mechanical devices in the spindle-driven process. The equilibriums of the heat transfer equations in the colloid element were initiated and presented for the estimations of input laser energy. When the input heat was absorbed by the colloid element, the average energy density could be obtained by the ratio of the overall energy density and the engaged laser scanning volume. In the experimental work of the validation tests, the polymer-metal colloid was consolidated on the substrate material with three different results: unconsolidated, partially consolidated and consolidated. The consolidation and bonding of metallic fractions on the heterogeneous substrate materials in the laser melting actions were evaluated and reported.
ISSN:2234-7593
2005-4602
DOI:10.1007/s12541-021-00518-w