Loading…
Design of borehole deployments for slope stability analysis based on a probabilistic approach
This study proposes a cross-correlation map-based borehole deployment approach for two-dimensional probabilistic slope stability analysis. This approach designs the layout of the proper number of boreholes based on the cross-correlation between the factor of safety and spatially variable soil streng...
Saved in:
Published in: | Computers and geotechnics 2021-05, Vol.133, p.103909, Article 103909 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study proposes a cross-correlation map-based borehole deployment approach for two-dimensional probabilistic slope stability analysis. This approach designs the layout of the proper number of boreholes based on the cross-correlation between the factor of safety and spatially variable soil strength every part of a slope. Numerically synthesized, undrained slopes are investigated as examples to illustrate the effectiveness of the proposed approach. Results demonstrate that the proposed approach is viable, and the cross-correlation maps are the appropriate metric for design slope borehole deployment. Using the cross-correlation maps, a small number of boreholes can sufficiently capture the large-scale heterogeneities that are critical to the slope stability. This information can help to identify the slip surface and improve the slope stability analysis. The small-scale heterogeneity, due to its short correlation structure or the residual covariance of the soil property field after conditioning using the borehole data, leads to a small amount of uncertainty in slope stability analysis. This small uncertainty could be vital to the slope stability analysis when the slope stability is close to the limit equilibrium state. |
---|---|
ISSN: | 0266-352X 1873-7633 |
DOI: | 10.1016/j.compgeo.2020.103909 |