Loading…
Rheological and Mechanical Properties of Poly(lactic acid)/Bio-Based Polyethylene/Clay Biocomposites Containing Montmorillonite and Vermiculite Clays
This work aims to investigate the effect of organically modified montmorillonite (OMMT) and vermiculite (OVT) clays on the properties of poly(lactic acid) (PLA)/bio-based polyethylene (BioPE)/clay biocomposites. Ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer was used to improve t...
Saved in:
Published in: | Journal of polymers and the environment 2021-06, Vol.29 (6), p.1777-1788 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-a03d03bb40e617fa7a0a638d84e89554f84d4aded21bcbd6ec5f57a7d501b1903 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-a03d03bb40e617fa7a0a638d84e89554f84d4aded21bcbd6ec5f57a7d501b1903 |
container_end_page | 1788 |
container_issue | 6 |
container_start_page | 1777 |
container_title | Journal of polymers and the environment |
container_volume | 29 |
creator | Agrawal, Pankaj Araújo, Aylanna P. M. Brito, Gustavo F. Cavalcanti, Shirley N. Alves, Amanda M. Freitas, Daniel M. G. Mélo, Tomás J. A. |
description | This work aims to investigate the effect of organically modified montmorillonite (OMMT) and vermiculite (OVT) clays on the properties of poly(lactic acid) (PLA)/bio-based polyethylene (BioPE)/clay biocomposites. Ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer was used to improve the interactions between the clay and the bio-based polymers. X-ray diffraction (XRD) patterns indicated a good dispersion of the OMMT and OVT clays in the PLA/BioPE blend. Morphology analysis by scanning electron microscopy (SEM) revealed a substantial decrease in the BioPE particles domain size with the addition of OMMT and OVT clays to PLA/BioPE blend and a better wetting of BioPE phase in the presence of EMA-GMA, resulting in higher impact strength. Dynamic mechanical thermal analysis (DMTA) showed a decrease in the glass transition (T
g
) and cold crystallization (T
cc
) temperatures of PLA with the addition of OMMT and OVT clays to the PLA/BioPE blend. A significant change in the rheological properties (complex viscosity, storage modulus, and relaxation time) was observed with the addition of EMA-GMA copolymer to PLA/BioPE/clay biocomposites. |
doi_str_mv | 10.1007/s10924-020-02015-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529604723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529604723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a03d03bb40e617fa7a0a638d84e89554f84d4aded21bcbd6ec5f57a7d501b1903</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEuXxA6wisYFF6NiJ81hCxUsCgRCwtRx70rpy7WKni_Y_-F-cFokdi9HM6N4zI90kOSNwRQCqcSDQ0CIDCkMRlm32khFhFc3qhjT7w1yWGWVFfpgchTAHgCaCo-T7bYbOuKmWwqTCqvQZ5UzY7frq3RJ9rzGkrktfnVlfGCF7LVMhtboc32iX3YiAaqthP1sbtDieGLFOoybdYumC7iM-cbYX2mo7TZ_juHBeG-Ns1LY_P9EvtFyZYR_ocJIcdMIEPP3tx8nH3e375CF7erl_nFw_ZTJnZZ8JyBXkbVsAlqTqRCVAlHmt6gLrhrGiqwtVCIWKkla2qkTJOlaJSjEgLWkgP07Od3eX3n2tMPR87lbexpecMtqUUFQ0jy66c0nvQvDY8aXXC-HXnAAf4ue7-HmMnm_j55sI5TsoRLOdov87_Q_1A896i-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529604723</pqid></control><display><type>article</type><title>Rheological and Mechanical Properties of Poly(lactic acid)/Bio-Based Polyethylene/Clay Biocomposites Containing Montmorillonite and Vermiculite Clays</title><source>Springer Link</source><creator>Agrawal, Pankaj ; Araújo, Aylanna P. M. ; Brito, Gustavo F. ; Cavalcanti, Shirley N. ; Alves, Amanda M. ; Freitas, Daniel M. G. ; Mélo, Tomás J. A.</creator><creatorcontrib>Agrawal, Pankaj ; Araújo, Aylanna P. M. ; Brito, Gustavo F. ; Cavalcanti, Shirley N. ; Alves, Amanda M. ; Freitas, Daniel M. G. ; Mélo, Tomás J. A.</creatorcontrib><description>This work aims to investigate the effect of organically modified montmorillonite (OMMT) and vermiculite (OVT) clays on the properties of poly(lactic acid) (PLA)/bio-based polyethylene (BioPE)/clay biocomposites. Ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer was used to improve the interactions between the clay and the bio-based polymers. X-ray diffraction (XRD) patterns indicated a good dispersion of the OMMT and OVT clays in the PLA/BioPE blend. Morphology analysis by scanning electron microscopy (SEM) revealed a substantial decrease in the BioPE particles domain size with the addition of OMMT and OVT clays to PLA/BioPE blend and a better wetting of BioPE phase in the presence of EMA-GMA, resulting in higher impact strength. Dynamic mechanical thermal analysis (DMTA) showed a decrease in the glass transition (T
g
) and cold crystallization (T
cc
) temperatures of PLA with the addition of OMMT and OVT clays to the PLA/BioPE blend. A significant change in the rheological properties (complex viscosity, storage modulus, and relaxation time) was observed with the addition of EMA-GMA copolymer to PLA/BioPE/clay biocomposites.</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-020-02015-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical materials ; Biopolymers ; Chemistry ; Chemistry and Materials Science ; Clay ; Cold crystallization ; Composite materials ; Copolymers ; Crystallization ; Diffraction patterns ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Glass transition ; Impact strength ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mechanical properties ; Montmorillonite ; Morphology ; Original Paper ; Polyethylene ; Polyethylenes ; Polylactic acid ; Polymer Sciences ; Polymers ; Relaxation time ; Rheological properties ; Rheology ; Scanning electron microscopy ; Storage modulus ; Thermal analysis ; Vermiculite ; Wetting ; X-ray diffraction</subject><ispartof>Journal of polymers and the environment, 2021-06, Vol.29 (6), p.1777-1788</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a03d03bb40e617fa7a0a638d84e89554f84d4aded21bcbd6ec5f57a7d501b1903</citedby><cites>FETCH-LOGICAL-c356t-a03d03bb40e617fa7a0a638d84e89554f84d4aded21bcbd6ec5f57a7d501b1903</cites><orcidid>0000-0002-5078-8321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Agrawal, Pankaj</creatorcontrib><creatorcontrib>Araújo, Aylanna P. M.</creatorcontrib><creatorcontrib>Brito, Gustavo F.</creatorcontrib><creatorcontrib>Cavalcanti, Shirley N.</creatorcontrib><creatorcontrib>Alves, Amanda M.</creatorcontrib><creatorcontrib>Freitas, Daniel M. G.</creatorcontrib><creatorcontrib>Mélo, Tomás J. A.</creatorcontrib><title>Rheological and Mechanical Properties of Poly(lactic acid)/Bio-Based Polyethylene/Clay Biocomposites Containing Montmorillonite and Vermiculite Clays</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><description>This work aims to investigate the effect of organically modified montmorillonite (OMMT) and vermiculite (OVT) clays on the properties of poly(lactic acid) (PLA)/bio-based polyethylene (BioPE)/clay biocomposites. Ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer was used to improve the interactions between the clay and the bio-based polymers. X-ray diffraction (XRD) patterns indicated a good dispersion of the OMMT and OVT clays in the PLA/BioPE blend. Morphology analysis by scanning electron microscopy (SEM) revealed a substantial decrease in the BioPE particles domain size with the addition of OMMT and OVT clays to PLA/BioPE blend and a better wetting of BioPE phase in the presence of EMA-GMA, resulting in higher impact strength. Dynamic mechanical thermal analysis (DMTA) showed a decrease in the glass transition (T
g
) and cold crystallization (T
cc
) temperatures of PLA with the addition of OMMT and OVT clays to the PLA/BioPE blend. A significant change in the rheological properties (complex viscosity, storage modulus, and relaxation time) was observed with the addition of EMA-GMA copolymer to PLA/BioPE/clay biocomposites.</description><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Clay</subject><subject>Cold crystallization</subject><subject>Composite materials</subject><subject>Copolymers</subject><subject>Crystallization</subject><subject>Diffraction patterns</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Glass transition</subject><subject>Impact strength</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Montmorillonite</subject><subject>Morphology</subject><subject>Original Paper</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Polylactic acid</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Relaxation time</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Scanning electron microscopy</subject><subject>Storage modulus</subject><subject>Thermal analysis</subject><subject>Vermiculite</subject><subject>Wetting</subject><subject>X-ray diffraction</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEuXxA6wisYFF6NiJ81hCxUsCgRCwtRx70rpy7WKni_Y_-F-cFokdi9HM6N4zI90kOSNwRQCqcSDQ0CIDCkMRlm32khFhFc3qhjT7w1yWGWVFfpgchTAHgCaCo-T7bYbOuKmWwqTCqvQZ5UzY7frq3RJ9rzGkrktfnVlfGCF7LVMhtboc32iX3YiAaqthP1sbtDieGLFOoybdYumC7iM-cbYX2mo7TZ_juHBeG-Ns1LY_P9EvtFyZYR_ocJIcdMIEPP3tx8nH3e375CF7erl_nFw_ZTJnZZ8JyBXkbVsAlqTqRCVAlHmt6gLrhrGiqwtVCIWKkla2qkTJOlaJSjEgLWkgP07Od3eX3n2tMPR87lbexpecMtqUUFQ0jy66c0nvQvDY8aXXC-HXnAAf4ue7-HmMnm_j55sI5TsoRLOdov87_Q_1A896i-8</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Agrawal, Pankaj</creator><creator>Araújo, Aylanna P. M.</creator><creator>Brito, Gustavo F.</creator><creator>Cavalcanti, Shirley N.</creator><creator>Alves, Amanda M.</creator><creator>Freitas, Daniel M. G.</creator><creator>Mélo, Tomás J. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5078-8321</orcidid></search><sort><creationdate>20210601</creationdate><title>Rheological and Mechanical Properties of Poly(lactic acid)/Bio-Based Polyethylene/Clay Biocomposites Containing Montmorillonite and Vermiculite Clays</title><author>Agrawal, Pankaj ; Araújo, Aylanna P. M. ; Brito, Gustavo F. ; Cavalcanti, Shirley N. ; Alves, Amanda M. ; Freitas, Daniel M. G. ; Mélo, Tomás J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a03d03bb40e617fa7a0a638d84e89554f84d4aded21bcbd6ec5f57a7d501b1903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Clay</topic><topic>Cold crystallization</topic><topic>Composite materials</topic><topic>Copolymers</topic><topic>Crystallization</topic><topic>Diffraction patterns</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Glass transition</topic><topic>Impact strength</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Montmorillonite</topic><topic>Morphology</topic><topic>Original Paper</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Polylactic acid</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Relaxation time</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Scanning electron microscopy</topic><topic>Storage modulus</topic><topic>Thermal analysis</topic><topic>Vermiculite</topic><topic>Wetting</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Pankaj</creatorcontrib><creatorcontrib>Araújo, Aylanna P. M.</creatorcontrib><creatorcontrib>Brito, Gustavo F.</creatorcontrib><creatorcontrib>Cavalcanti, Shirley N.</creatorcontrib><creatorcontrib>Alves, Amanda M.</creatorcontrib><creatorcontrib>Freitas, Daniel M. G.</creatorcontrib><creatorcontrib>Mélo, Tomás J. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrawal, Pankaj</au><au>Araújo, Aylanna P. M.</au><au>Brito, Gustavo F.</au><au>Cavalcanti, Shirley N.</au><au>Alves, Amanda M.</au><au>Freitas, Daniel M. G.</au><au>Mélo, Tomás J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological and Mechanical Properties of Poly(lactic acid)/Bio-Based Polyethylene/Clay Biocomposites Containing Montmorillonite and Vermiculite Clays</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>29</volume><issue>6</issue><spage>1777</spage><epage>1788</epage><pages>1777-1788</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>This work aims to investigate the effect of organically modified montmorillonite (OMMT) and vermiculite (OVT) clays on the properties of poly(lactic acid) (PLA)/bio-based polyethylene (BioPE)/clay biocomposites. Ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer was used to improve the interactions between the clay and the bio-based polymers. X-ray diffraction (XRD) patterns indicated a good dispersion of the OMMT and OVT clays in the PLA/BioPE blend. Morphology analysis by scanning electron microscopy (SEM) revealed a substantial decrease in the BioPE particles domain size with the addition of OMMT and OVT clays to PLA/BioPE blend and a better wetting of BioPE phase in the presence of EMA-GMA, resulting in higher impact strength. Dynamic mechanical thermal analysis (DMTA) showed a decrease in the glass transition (T
g
) and cold crystallization (T
cc
) temperatures of PLA with the addition of OMMT and OVT clays to the PLA/BioPE blend. A significant change in the rheological properties (complex viscosity, storage modulus, and relaxation time) was observed with the addition of EMA-GMA copolymer to PLA/BioPE/clay biocomposites.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-020-02015-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5078-8321</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-2543 |
ispartof | Journal of polymers and the environment, 2021-06, Vol.29 (6), p.1777-1788 |
issn | 1566-2543 1572-8919 |
language | eng |
recordid | cdi_proquest_journals_2529604723 |
source | Springer Link |
subjects | Biomedical materials Biopolymers Chemistry Chemistry and Materials Science Clay Cold crystallization Composite materials Copolymers Crystallization Diffraction patterns Environmental Chemistry Environmental Engineering/Biotechnology Glass transition Impact strength Industrial Chemistry/Chemical Engineering Materials Science Mechanical properties Montmorillonite Morphology Original Paper Polyethylene Polyethylenes Polylactic acid Polymer Sciences Polymers Relaxation time Rheological properties Rheology Scanning electron microscopy Storage modulus Thermal analysis Vermiculite Wetting X-ray diffraction |
title | Rheological and Mechanical Properties of Poly(lactic acid)/Bio-Based Polyethylene/Clay Biocomposites Containing Montmorillonite and Vermiculite Clays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20and%20Mechanical%20Properties%20of%20Poly(lactic%20acid)/Bio-Based%20Polyethylene/Clay%20Biocomposites%20Containing%20Montmorillonite%20and%20Vermiculite%20Clays&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Agrawal,%20Pankaj&rft.date=2021-06-01&rft.volume=29&rft.issue=6&rft.spage=1777&rft.epage=1788&rft.pages=1777-1788&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-020-02015-z&rft_dat=%3Cproquest_cross%3E2529604723%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-a03d03bb40e617fa7a0a638d84e89554f84d4aded21bcbd6ec5f57a7d501b1903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2529604723&rft_id=info:pmid/&rfr_iscdi=true |