Loading…
Synergistic epidemic spreading in correlated networks
We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network with tunable degree correlation, we identify a disc...
Saved in:
Published in: | arXiv.org 2022-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mizutaka, Shogo Mori, Kizashi Hasegawa, Takehisa |
description | We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network with tunable degree correlation, we identify a discontinuous transition that is independent of the degree correlation strength unless the synergy is absent or extremely weak. Regardless of synergy (absent or present), a positive and negative degree correlation in the model reduces and raises the epidemic threshold, respectively. For networks with a strongly positive degree correlation, the mean-field treatment predicts the emergence of two discontinuous jumps in the steady-state infected density. To test the mean-field treatment, we provide approximate master equations of the present model. We quantitatively confirm that the approximate master equations agree with not only all qualitative predictions of the mean-field treatment but also corresponding Monte-Carlo simulations. |
doi_str_mv | 10.48550/arxiv.2105.08992 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2529616968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529616968</sourcerecordid><originalsourceid>FETCH-LOGICAL-a952-81b7b83ad030bd5af86a1adf735cf5f5a7e944260bb498324f8610d3776884c13</originalsourceid><addsrcrecordid>eNotjclqwzAURUWh0JDmA7ozdG336UlPw7KEThDootkH2ZKC0tR2JafD39fQrO5ZHM5l7IZDIw0R3Ln8k74a5EANGGvxgi1QCF4biXjFVqUcAACVRiKxYPT224e8T2VKXRXG5MPHDGXMwfnU76vUV92Qczi6KfiqD9P3kN_LNbuM7ljC6rxLtn182K6f683r08v6flM7S1gb3urWCOdBQOvJRaMcdz5qQV2kSE4HKyUqaFtpjUA5Cxy80FoZIzsuluz2Pzvm4fMUyrQ7DKfcz487JLSKK6uM-AMndkb1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529616968</pqid></control><display><type>article</type><title>Synergistic epidemic spreading in correlated networks</title><source>Publicly Available Content Database</source><creator>Mizutaka, Shogo ; Mori, Kizashi ; Hasegawa, Takehisa</creator><creatorcontrib>Mizutaka, Shogo ; Mori, Kizashi ; Hasegawa, Takehisa</creatorcontrib><description>We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network with tunable degree correlation, we identify a discontinuous transition that is independent of the degree correlation strength unless the synergy is absent or extremely weak. Regardless of synergy (absent or present), a positive and negative degree correlation in the model reduces and raises the epidemic threshold, respectively. For networks with a strongly positive degree correlation, the mean-field treatment predicts the emergence of two discontinuous jumps in the steady-state infected density. To test the mean-field treatment, we provide approximate master equations of the present model. We quantitatively confirm that the approximate master equations agree with not only all qualitative predictions of the mean-field treatment but also corresponding Monte-Carlo simulations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2105.08992</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Correlation ; Epidemics ; Mathematical models</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2529616968?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Mizutaka, Shogo</creatorcontrib><creatorcontrib>Mori, Kizashi</creatorcontrib><creatorcontrib>Hasegawa, Takehisa</creatorcontrib><title>Synergistic epidemic spreading in correlated networks</title><title>arXiv.org</title><description>We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network with tunable degree correlation, we identify a discontinuous transition that is independent of the degree correlation strength unless the synergy is absent or extremely weak. Regardless of synergy (absent or present), a positive and negative degree correlation in the model reduces and raises the epidemic threshold, respectively. For networks with a strongly positive degree correlation, the mean-field treatment predicts the emergence of two discontinuous jumps in the steady-state infected density. To test the mean-field treatment, we provide approximate master equations of the present model. We quantitatively confirm that the approximate master equations agree with not only all qualitative predictions of the mean-field treatment but also corresponding Monte-Carlo simulations.</description><subject>Correlation</subject><subject>Epidemics</subject><subject>Mathematical models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjclqwzAURUWh0JDmA7ozdG336UlPw7KEThDootkH2ZKC0tR2JafD39fQrO5ZHM5l7IZDIw0R3Ln8k74a5EANGGvxgi1QCF4biXjFVqUcAACVRiKxYPT224e8T2VKXRXG5MPHDGXMwfnU76vUV92Qczi6KfiqD9P3kN_LNbuM7ljC6rxLtn182K6f683r08v6flM7S1gb3urWCOdBQOvJRaMcdz5qQV2kSE4HKyUqaFtpjUA5Cxy80FoZIzsuluz2Pzvm4fMUyrQ7DKfcz487JLSKK6uM-AMndkb1</recordid><startdate>20220907</startdate><enddate>20220907</enddate><creator>Mizutaka, Shogo</creator><creator>Mori, Kizashi</creator><creator>Hasegawa, Takehisa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220907</creationdate><title>Synergistic epidemic spreading in correlated networks</title><author>Mizutaka, Shogo ; Mori, Kizashi ; Hasegawa, Takehisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a952-81b7b83ad030bd5af86a1adf735cf5f5a7e944260bb498324f8610d3776884c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Correlation</topic><topic>Epidemics</topic><topic>Mathematical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Mizutaka, Shogo</creatorcontrib><creatorcontrib>Mori, Kizashi</creatorcontrib><creatorcontrib>Hasegawa, Takehisa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mizutaka, Shogo</au><au>Mori, Kizashi</au><au>Hasegawa, Takehisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic epidemic spreading in correlated networks</atitle><jtitle>arXiv.org</jtitle><date>2022-09-07</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network with tunable degree correlation, we identify a discontinuous transition that is independent of the degree correlation strength unless the synergy is absent or extremely weak. Regardless of synergy (absent or present), a positive and negative degree correlation in the model reduces and raises the epidemic threshold, respectively. For networks with a strongly positive degree correlation, the mean-field treatment predicts the emergence of two discontinuous jumps in the steady-state infected density. To test the mean-field treatment, we provide approximate master equations of the present model. We quantitatively confirm that the approximate master equations agree with not only all qualitative predictions of the mean-field treatment but also corresponding Monte-Carlo simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2105.08992</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2529616968 |
source | Publicly Available Content Database |
subjects | Correlation Epidemics Mathematical models |
title | Synergistic epidemic spreading in correlated networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20epidemic%20spreading%20in%20correlated%20networks&rft.jtitle=arXiv.org&rft.au=Mizutaka,%20Shogo&rft.date=2022-09-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2105.08992&rft_dat=%3Cproquest%3E2529616968%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a952-81b7b83ad030bd5af86a1adf735cf5f5a7e944260bb498324f8610d3776884c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2529616968&rft_id=info:pmid/&rfr_iscdi=true |