Loading…

Use of a Multitheoretic Model to Understand and Classify Juvenile Computer Hacking Behavior

Criminological inquiry has identified a range of risk factors associated with juvenile delinquency. However, little research has assessed juvenile computer hacking, despite the substantial harm and opportunities for delinquent behavior online. Therefore, understanding the applicability of criminolog...

Full description

Saved in:
Bibliographic Details
Published in:Criminal justice and behavior 2021-07, Vol.48 (7), p.943-963
Main Authors: Fox, Bryanna, Holt, Thomas J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-259211bbb2b790167129e7eb867c110bdb9a1d9f9f51fe2084c456392ec0379d3
cites cdi_FETCH-LOGICAL-c309t-259211bbb2b790167129e7eb867c110bdb9a1d9f9f51fe2084c456392ec0379d3
container_end_page 963
container_issue 7
container_start_page 943
container_title Criminal justice and behavior
container_volume 48
creator Fox, Bryanna
Holt, Thomas J.
description Criminological inquiry has identified a range of risk factors associated with juvenile delinquency. However, little research has assessed juvenile computer hacking, despite the substantial harm and opportunities for delinquent behavior online. Therefore, understanding the applicability of criminological risk factors among a cross-national sample of juvenile hackers is important from a theoretical and applied standpoint. This study aimed to address this gap using a logistic regression and latent class analysis (LCA) of risk factors associated with self-reported hacking behavior in a sample of more than 60,000 juveniles from around the globe. Results demonstrated support for individual- and structural-level predictors of delinquency, although distinct risk factors for hacking among three subtypes are identified in the LCA. This study examines criminological risk factors for juvenile hacking in a cross-national sample and provides insight into the distinct risk factors of hacking, so more tailored prevention and treatment modalities can be developed.
doi_str_mv 10.1177/0093854820969754
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529739502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0093854820969754</sage_id><sourcerecordid>2529739502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-259211bbb2b790167129e7eb867c110bdb9a1d9f9f51fe2084c456392ec0379d3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFbvHhc8R2c32WznqEGt0uLFnjyETTJpU9Ns3d0U-u9tqCAIHoZ3eN97A4-xawG3Qmh9B4DxRCUTCZiiVskJGwmlZBQrTE7ZaLCjwT9nF96vASBRQo3Yx8ITtzU3fN63oQkrso5CU_K5rajlwfJFV5HzwXQVHy5rjfdNveev_Y66piWe2c22D-T41JSfTbfkD7Qyu8a6S3ZWm9bT1Y-O2eLp8T2bRrO355fsfhaVMWCIpEIpRFEUstAIItVCImkqJqkuhYCiKtCICmuslahJwiQpE5XGKKmEWGMVj9nNsXfr7FdPPuRr27vu8DKXSqKOUYE8UHCkSme9d1TnW9dsjNvnAvJhwvzvhIdIdIx4s6Tf0n_5b2nyb6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529739502</pqid></control><display><type>article</type><title>Use of a Multitheoretic Model to Understand and Classify Juvenile Computer Hacking Behavior</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Sage Journals Online</source><creator>Fox, Bryanna ; Holt, Thomas J.</creator><creatorcontrib>Fox, Bryanna ; Holt, Thomas J.</creatorcontrib><description>Criminological inquiry has identified a range of risk factors associated with juvenile delinquency. However, little research has assessed juvenile computer hacking, despite the substantial harm and opportunities for delinquent behavior online. Therefore, understanding the applicability of criminological risk factors among a cross-national sample of juvenile hackers is important from a theoretical and applied standpoint. This study aimed to address this gap using a logistic regression and latent class analysis (LCA) of risk factors associated with self-reported hacking behavior in a sample of more than 60,000 juveniles from around the globe. Results demonstrated support for individual- and structural-level predictors of delinquency, although distinct risk factors for hacking among three subtypes are identified in the LCA. This study examines criminological risk factors for juvenile hacking in a cross-national sample and provides insight into the distinct risk factors of hacking, so more tailored prevention and treatment modalities can be developed.</description><identifier>ISSN: 0093-8548</identifier><identifier>EISSN: 1552-3594</identifier><identifier>DOI: 10.1177/0093854820969754</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Behavior ; Criminality ; Criminology ; Hacking ; Juvenile delinquency ; Latent class analysis ; Risk factors ; Subtypes</subject><ispartof>Criminal justice and behavior, 2021-07, Vol.48 (7), p.943-963</ispartof><rights>2020 International Association for Correctional and Forensic Psychology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-259211bbb2b790167129e7eb867c110bdb9a1d9f9f51fe2084c456392ec0379d3</citedby><cites>FETCH-LOGICAL-c309t-259211bbb2b790167129e7eb867c110bdb9a1d9f9f51fe2084c456392ec0379d3</cites><orcidid>0000-0002-2678-075X ; 0000-0002-5894-0172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,30999,79364</link.rule.ids></links><search><creatorcontrib>Fox, Bryanna</creatorcontrib><creatorcontrib>Holt, Thomas J.</creatorcontrib><title>Use of a Multitheoretic Model to Understand and Classify Juvenile Computer Hacking Behavior</title><title>Criminal justice and behavior</title><description>Criminological inquiry has identified a range of risk factors associated with juvenile delinquency. However, little research has assessed juvenile computer hacking, despite the substantial harm and opportunities for delinquent behavior online. Therefore, understanding the applicability of criminological risk factors among a cross-national sample of juvenile hackers is important from a theoretical and applied standpoint. This study aimed to address this gap using a logistic regression and latent class analysis (LCA) of risk factors associated with self-reported hacking behavior in a sample of more than 60,000 juveniles from around the globe. Results demonstrated support for individual- and structural-level predictors of delinquency, although distinct risk factors for hacking among three subtypes are identified in the LCA. This study examines criminological risk factors for juvenile hacking in a cross-national sample and provides insight into the distinct risk factors of hacking, so more tailored prevention and treatment modalities can be developed.</description><subject>Behavior</subject><subject>Criminality</subject><subject>Criminology</subject><subject>Hacking</subject><subject>Juvenile delinquency</subject><subject>Latent class analysis</subject><subject>Risk factors</subject><subject>Subtypes</subject><issn>0093-8548</issn><issn>1552-3594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kEFLw0AQhRdRsFbvHhc8R2c32WznqEGt0uLFnjyETTJpU9Ns3d0U-u9tqCAIHoZ3eN97A4-xawG3Qmh9B4DxRCUTCZiiVskJGwmlZBQrTE7ZaLCjwT9nF96vASBRQo3Yx8ITtzU3fN63oQkrso5CU_K5rajlwfJFV5HzwXQVHy5rjfdNveev_Y66piWe2c22D-T41JSfTbfkD7Qyu8a6S3ZWm9bT1Y-O2eLp8T2bRrO355fsfhaVMWCIpEIpRFEUstAIItVCImkqJqkuhYCiKtCICmuslahJwiQpE5XGKKmEWGMVj9nNsXfr7FdPPuRr27vu8DKXSqKOUYE8UHCkSme9d1TnW9dsjNvnAvJhwvzvhIdIdIx4s6Tf0n_5b2nyb6o</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Fox, Bryanna</creator><creator>Holt, Thomas J.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>K7.</scope><orcidid>https://orcid.org/0000-0002-2678-075X</orcidid><orcidid>https://orcid.org/0000-0002-5894-0172</orcidid></search><sort><creationdate>202107</creationdate><title>Use of a Multitheoretic Model to Understand and Classify Juvenile Computer Hacking Behavior</title><author>Fox, Bryanna ; Holt, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-259211bbb2b790167129e7eb867c110bdb9a1d9f9f51fe2084c456392ec0379d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Behavior</topic><topic>Criminality</topic><topic>Criminology</topic><topic>Hacking</topic><topic>Juvenile delinquency</topic><topic>Latent class analysis</topic><topic>Risk factors</topic><topic>Subtypes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Bryanna</creatorcontrib><creatorcontrib>Holt, Thomas J.</creatorcontrib><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>ProQuest Criminal Justice (Alumni)</collection><jtitle>Criminal justice and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Bryanna</au><au>Holt, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of a Multitheoretic Model to Understand and Classify Juvenile Computer Hacking Behavior</atitle><jtitle>Criminal justice and behavior</jtitle><date>2021-07</date><risdate>2021</risdate><volume>48</volume><issue>7</issue><spage>943</spage><epage>963</epage><pages>943-963</pages><issn>0093-8548</issn><eissn>1552-3594</eissn><abstract>Criminological inquiry has identified a range of risk factors associated with juvenile delinquency. However, little research has assessed juvenile computer hacking, despite the substantial harm and opportunities for delinquent behavior online. Therefore, understanding the applicability of criminological risk factors among a cross-national sample of juvenile hackers is important from a theoretical and applied standpoint. This study aimed to address this gap using a logistic regression and latent class analysis (LCA) of risk factors associated with self-reported hacking behavior in a sample of more than 60,000 juveniles from around the globe. Results demonstrated support for individual- and structural-level predictors of delinquency, although distinct risk factors for hacking among three subtypes are identified in the LCA. This study examines criminological risk factors for juvenile hacking in a cross-national sample and provides insight into the distinct risk factors of hacking, so more tailored prevention and treatment modalities can be developed.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0093854820969754</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2678-075X</orcidid><orcidid>https://orcid.org/0000-0002-5894-0172</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0093-8548
ispartof Criminal justice and behavior, 2021-07, Vol.48 (7), p.943-963
issn 0093-8548
1552-3594
language eng
recordid cdi_proquest_journals_2529739502
source Applied Social Sciences Index & Abstracts (ASSIA); Sage Journals Online
subjects Behavior
Criminality
Criminology
Hacking
Juvenile delinquency
Latent class analysis
Risk factors
Subtypes
title Use of a Multitheoretic Model to Understand and Classify Juvenile Computer Hacking Behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20a%20Multitheoretic%20Model%20to%20Understand%20and%20Classify%20Juvenile%20Computer%20Hacking%20Behavior&rft.jtitle=Criminal%20justice%20and%20behavior&rft.au=Fox,%20Bryanna&rft.date=2021-07&rft.volume=48&rft.issue=7&rft.spage=943&rft.epage=963&rft.pages=943-963&rft.issn=0093-8548&rft.eissn=1552-3594&rft_id=info:doi/10.1177/0093854820969754&rft_dat=%3Cproquest_cross%3E2529739502%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-259211bbb2b790167129e7eb867c110bdb9a1d9f9f51fe2084c456392ec0379d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2529739502&rft_id=info:pmid/&rft_sage_id=10.1177_0093854820969754&rfr_iscdi=true