Loading…
External Carbon Source Facilitates Indirect Cr (VI) Bioreduction Process by Anaerobic Sludge Produced from Kitchen Waste
This study presented the investigation on indirect Cr (VI) bioreduction process by anaerobic sludge produced from kitchen waste (ASKW) using an external source of glucose and sulfate to favor the reducing environment. These compounds were added at the beginning of the experiment along with 500 mg·L−...
Saved in:
Published in: | Sustainability 2021-05, Vol.13 (9), p.4806 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study presented the investigation on indirect Cr (VI) bioreduction process by anaerobic sludge produced from kitchen waste (ASKW) using an external source of glucose and sulfate to favor the reducing environment. These compounds were added at the beginning of the experiment along with 500 mg·L−1 Cr (VI). The system containing 1 g of glucose and 2 g of sulfate attained a higher reduction, which was 10% higher than that of the control experiment. This study indicated that a neutral environment (pH ~7), along with a high release of polysaccharides (PS), improved the removal efficiency by Cr (VI) bioreduction process. Desulfovibrio and Sulfurospirillum (genus level), which accounted for 3% and 1% of the whole microorganism, respectively, were responsible for the sulfidogenic reaction. Additionally, Thermovirga (genus level) reduced from 14% to 11% and 10%. These microorganisms contributed to dominating the indirect Cr (VI) bioreduction process. SEM and FTIR analysis of the sludges obtaining from the indirect Cr (VI) bioreduction systems indicated that the external glucose could facilitate the formation of looser porous structures and richer functional groups of sludges, thus adsorbing more Cr (III) to reduce its toxicity. Meanwhile, the intensity of the hydroxyl bond, which possesses strong reducibility, was much higher after adding external glucose. Chromate reductase gene (chrR) and sulfite reductase gene (dsrA) contributed to the indirect Cr (VI) bioreduction process. These might be the main mechanisms of the external glucose acting on indirect Cr (VI) bioreduction by ASKW. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su13094806 |