Loading…
Exploring The Limits Of Data Augmentation For Retinal Vessel Segmentation
Retinal Vessel Segmentation is important for the diagnosis of various diseases. The research on retinal vessel segmentation focuses mainly on the improvement of the segmentation model which is usually based on U-Net architecture. In our study, we use the U-Net architecture and we rely on heavy data...
Saved in:
Published in: | arXiv.org 2021-05 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Uysal, Enes Sadi M \c{S}afak Bilici B Selin Zaza Özgenç, M Yiğit Boyar, Onur |
description | Retinal Vessel Segmentation is important for the diagnosis of various diseases. The research on retinal vessel segmentation focuses mainly on the improvement of the segmentation model which is usually based on U-Net architecture. In our study, we use the U-Net architecture and we rely on heavy data augmentation in order to achieve better performance. The success of the data augmentation relies on successfully addressing the problem of input images. By analyzing input images and performing the augmentation accordingly we show that the performance of the U-Net model can be increased dramatically. Results are reported using the most widely used retina dataset, DRIVE. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2530228789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2530228789</sourcerecordid><originalsourceid>FETCH-proquest_journals_25302287893</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_8MC5EBNr6yjaoiAIWlxLhteakiY1LwU_XwfB1emGu5uwSEi5SvK1EDMWE3Wcc7HJRJrKiJ2K12Cc17aF6oFw1r0OBJcGDioo2I1tjzaooJ2F0nm4YtBWGbgjERq44c8v2LRRhjD-cs6WZVHtj8ng3XNECnXnRv-ZqRap5ELkWb6V_1VvRAg8Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530228789</pqid></control><display><type>article</type><title>Exploring The Limits Of Data Augmentation For Retinal Vessel Segmentation</title><source>Publicly Available Content (ProQuest)</source><creator>Uysal, Enes Sadi ; M \c{S}afak Bilici ; B Selin Zaza ; Özgenç, M Yiğit ; Boyar, Onur</creator><creatorcontrib>Uysal, Enes Sadi ; M \c{S}afak Bilici ; B Selin Zaza ; Özgenç, M Yiğit ; Boyar, Onur</creatorcontrib><description>Retinal Vessel Segmentation is important for the diagnosis of various diseases. The research on retinal vessel segmentation focuses mainly on the improvement of the segmentation model which is usually based on U-Net architecture. In our study, we use the U-Net architecture and we rely on heavy data augmentation in order to achieve better performance. The success of the data augmentation relies on successfully addressing the problem of input images. By analyzing input images and performing the augmentation accordingly we show that the performance of the U-Net model can be increased dramatically. Results are reported using the most widely used retina dataset, DRIVE.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Blood vessels ; Data augmentation ; Image segmentation ; Medical imaging</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2530228789?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Uysal, Enes Sadi</creatorcontrib><creatorcontrib>M \c{S}afak Bilici</creatorcontrib><creatorcontrib>B Selin Zaza</creatorcontrib><creatorcontrib>Özgenç, M Yiğit</creatorcontrib><creatorcontrib>Boyar, Onur</creatorcontrib><title>Exploring The Limits Of Data Augmentation For Retinal Vessel Segmentation</title><title>arXiv.org</title><description>Retinal Vessel Segmentation is important for the diagnosis of various diseases. The research on retinal vessel segmentation focuses mainly on the improvement of the segmentation model which is usually based on U-Net architecture. In our study, we use the U-Net architecture and we rely on heavy data augmentation in order to achieve better performance. The success of the data augmentation relies on successfully addressing the problem of input images. By analyzing input images and performing the augmentation accordingly we show that the performance of the U-Net model can be increased dramatically. Results are reported using the most widely used retina dataset, DRIVE.</description><subject>Blood vessels</subject><subject>Data augmentation</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_8MC5EBNr6yjaoiAIWlxLhteakiY1LwU_XwfB1emGu5uwSEi5SvK1EDMWE3Wcc7HJRJrKiJ2K12Cc17aF6oFw1r0OBJcGDioo2I1tjzaooJ2F0nm4YtBWGbgjERq44c8v2LRRhjD-cs6WZVHtj8ng3XNECnXnRv-ZqRap5ELkWb6V_1VvRAg8Bg</recordid><startdate>20210530</startdate><enddate>20210530</enddate><creator>Uysal, Enes Sadi</creator><creator>M \c{S}afak Bilici</creator><creator>B Selin Zaza</creator><creator>Özgenç, M Yiğit</creator><creator>Boyar, Onur</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210530</creationdate><title>Exploring The Limits Of Data Augmentation For Retinal Vessel Segmentation</title><author>Uysal, Enes Sadi ; M \c{S}afak Bilici ; B Selin Zaza ; Özgenç, M Yiğit ; Boyar, Onur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25302287893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood vessels</topic><topic>Data augmentation</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Uysal, Enes Sadi</creatorcontrib><creatorcontrib>M \c{S}afak Bilici</creatorcontrib><creatorcontrib>B Selin Zaza</creatorcontrib><creatorcontrib>Özgenç, M Yiğit</creatorcontrib><creatorcontrib>Boyar, Onur</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uysal, Enes Sadi</au><au>M \c{S}afak Bilici</au><au>B Selin Zaza</au><au>Özgenç, M Yiğit</au><au>Boyar, Onur</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Exploring The Limits Of Data Augmentation For Retinal Vessel Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2021-05-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Retinal Vessel Segmentation is important for the diagnosis of various diseases. The research on retinal vessel segmentation focuses mainly on the improvement of the segmentation model which is usually based on U-Net architecture. In our study, we use the U-Net architecture and we rely on heavy data augmentation in order to achieve better performance. The success of the data augmentation relies on successfully addressing the problem of input images. By analyzing input images and performing the augmentation accordingly we show that the performance of the U-Net model can be increased dramatically. Results are reported using the most widely used retina dataset, DRIVE.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2530228789 |
source | Publicly Available Content (ProQuest) |
subjects | Blood vessels Data augmentation Image segmentation Medical imaging |
title | Exploring The Limits Of Data Augmentation For Retinal Vessel Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Exploring%20The%20Limits%20Of%20Data%20Augmentation%20For%20Retinal%20Vessel%20Segmentation&rft.jtitle=arXiv.org&rft.au=Uysal,%20Enes%20Sadi&rft.date=2021-05-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2530228789%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25302287893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530228789&rft_id=info:pmid/&rfr_iscdi=true |