Loading…

Hidden scale invariance in Navier-Stokes intermittency

We expose a hidden scaling symmetry of the Navier-Stokes equations in the limit of vanishing viscosity, which stems from dynamical space-time rescaling around suitably defined Lagrangian scaling centers. At a dynamical level, the hidden symmetry projects solutions which differ up to Galilean invaria...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-07
Main Authors: Mailybaev, Alexei A, Thalabard, Simon
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mailybaev, Alexei A
Thalabard, Simon
description We expose a hidden scaling symmetry of the Navier-Stokes equations in the limit of vanishing viscosity, which stems from dynamical space-time rescaling around suitably defined Lagrangian scaling centers. At a dynamical level, the hidden symmetry projects solutions which differ up to Galilean invariance and global temporal scaling onto the same representative flow. At a statistical level, this projection repairs the scale invariance, which is broken by intermittency in the original formulation. Following previous work by the first author, we here postulate and substantiate with numerics that hidden symmetry statistically holds in the inertial interval of fully developed turbulence. We show that this symmetry accounts for the scale-invariance of a certain class of observables, in particular, the Kolmogorov multipliers.
doi_str_mv 10.48550/arxiv.2105.09403
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2530242503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2530242503</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-1ba153e7270c7bf5266f709ad122fcf41f62f60803444510eb6b35e7d18eb1293</originalsourceid><addsrcrecordid>eNotjUFLw0AQRhdBsNT-AG8Bz4mzMzu7yVGKWqHowd7LJpmFrTXR3bTov7diT9_jHd6n1I2GytTMcOfTdzxWqIEraAzQhZohkS5rg3ilFjnvAACtQ2aaKbuKfS9DkTu_lyIOR5-iH7o_LF78MUoq36bxXfJJTJI-4jTJ0P1cq8vg91kW552rzePDZrkq169Pz8v7dekZqdSt10zi0EHn2sBobXDQ-F4jhi4YHSwGCzWQMYY1SGtbYnG9rqXV2NBc3f5nP9P4dZA8bXfjIQ2nxy0yARpkIPoF4lJGXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530242503</pqid></control><display><type>article</type><title>Hidden scale invariance in Navier-Stokes intermittency</title><source>ProQuest - Publicly Available Content Database</source><creator>Mailybaev, Alexei A ; Thalabard, Simon</creator><creatorcontrib>Mailybaev, Alexei A ; Thalabard, Simon</creatorcontrib><description>We expose a hidden scaling symmetry of the Navier-Stokes equations in the limit of vanishing viscosity, which stems from dynamical space-time rescaling around suitably defined Lagrangian scaling centers. At a dynamical level, the hidden symmetry projects solutions which differ up to Galilean invariance and global temporal scaling onto the same representative flow. At a statistical level, this projection repairs the scale invariance, which is broken by intermittency in the original formulation. Following previous work by the first author, we here postulate and substantiate with numerics that hidden symmetry statistically holds in the inertial interval of fully developed turbulence. We show that this symmetry accounts for the scale-invariance of a certain class of observables, in particular, the Kolmogorov multipliers.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2105.09403</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computational fluid dynamics ; Fluid flow ; Intermittency ; Invariance ; Navier-Stokes equations ; Rescaling ; Scale invariance ; Scaling ; Symmetry</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2530242503?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Mailybaev, Alexei A</creatorcontrib><creatorcontrib>Thalabard, Simon</creatorcontrib><title>Hidden scale invariance in Navier-Stokes intermittency</title><title>arXiv.org</title><description>We expose a hidden scaling symmetry of the Navier-Stokes equations in the limit of vanishing viscosity, which stems from dynamical space-time rescaling around suitably defined Lagrangian scaling centers. At a dynamical level, the hidden symmetry projects solutions which differ up to Galilean invariance and global temporal scaling onto the same representative flow. At a statistical level, this projection repairs the scale invariance, which is broken by intermittency in the original formulation. Following previous work by the first author, we here postulate and substantiate with numerics that hidden symmetry statistically holds in the inertial interval of fully developed turbulence. We show that this symmetry accounts for the scale-invariance of a certain class of observables, in particular, the Kolmogorov multipliers.</description><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Intermittency</subject><subject>Invariance</subject><subject>Navier-Stokes equations</subject><subject>Rescaling</subject><subject>Scale invariance</subject><subject>Scaling</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUFLw0AQRhdBsNT-AG8Bz4mzMzu7yVGKWqHowd7LJpmFrTXR3bTov7diT9_jHd6n1I2GytTMcOfTdzxWqIEraAzQhZohkS5rg3ilFjnvAACtQ2aaKbuKfS9DkTu_lyIOR5-iH7o_LF78MUoq36bxXfJJTJI-4jTJ0P1cq8vg91kW552rzePDZrkq169Pz8v7dekZqdSt10zi0EHn2sBobXDQ-F4jhi4YHSwGCzWQMYY1SGtbYnG9rqXV2NBc3f5nP9P4dZA8bXfjIQ2nxy0yARpkIPoF4lJGXA</recordid><startdate>20210727</startdate><enddate>20210727</enddate><creator>Mailybaev, Alexei A</creator><creator>Thalabard, Simon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210727</creationdate><title>Hidden scale invariance in Navier-Stokes intermittency</title><author>Mailybaev, Alexei A ; Thalabard, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-1ba153e7270c7bf5266f709ad122fcf41f62f60803444510eb6b35e7d18eb1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Intermittency</topic><topic>Invariance</topic><topic>Navier-Stokes equations</topic><topic>Rescaling</topic><topic>Scale invariance</topic><topic>Scaling</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Mailybaev, Alexei A</creatorcontrib><creatorcontrib>Thalabard, Simon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mailybaev, Alexei A</au><au>Thalabard, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden scale invariance in Navier-Stokes intermittency</atitle><jtitle>arXiv.org</jtitle><date>2021-07-27</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We expose a hidden scaling symmetry of the Navier-Stokes equations in the limit of vanishing viscosity, which stems from dynamical space-time rescaling around suitably defined Lagrangian scaling centers. At a dynamical level, the hidden symmetry projects solutions which differ up to Galilean invariance and global temporal scaling onto the same representative flow. At a statistical level, this projection repairs the scale invariance, which is broken by intermittency in the original formulation. Following previous work by the first author, we here postulate and substantiate with numerics that hidden symmetry statistically holds in the inertial interval of fully developed turbulence. We show that this symmetry accounts for the scale-invariance of a certain class of observables, in particular, the Kolmogorov multipliers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2105.09403</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2530242503
source ProQuest - Publicly Available Content Database
subjects Computational fluid dynamics
Fluid flow
Intermittency
Invariance
Navier-Stokes equations
Rescaling
Scale invariance
Scaling
Symmetry
title Hidden scale invariance in Navier-Stokes intermittency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A47%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20scale%20invariance%20in%20Navier-Stokes%20intermittency&rft.jtitle=arXiv.org&rft.au=Mailybaev,%20Alexei%20A&rft.date=2021-07-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2105.09403&rft_dat=%3Cproquest%3E2530242503%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-1ba153e7270c7bf5266f709ad122fcf41f62f60803444510eb6b35e7d18eb1293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530242503&rft_id=info:pmid/&rfr_iscdi=true