Loading…
Holographic dynamics simulations with a trapped ion quantum computer
Quantum computers have the potential to efficiently simulate the dynamics of many interacting quantum particles, a classically intractable task of central importance to fields ranging from chemistry to high-energy physics. However, precision and memory limitations of existing hardware severely limit...
Saved in:
Published in: | arXiv.org 2021-05 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chertkov, Eli Bohnet, Justin Francois, David Gaebler, John Gresh, Dan Hankin, Aaron Lee, Kenny Tobey, Ra'anan Hayes, David Neyenhuis, Brian Stutz, Russell Potter, Andrew C Foss-Feig, Michael |
description | Quantum computers have the potential to efficiently simulate the dynamics of many interacting quantum particles, a classically intractable task of central importance to fields ranging from chemistry to high-energy physics. However, precision and memory limitations of existing hardware severely limit the size and complexity of models that can be simulated with conventional methods. Here, we demonstrate and benchmark a new scalable quantum simulation paradigm--holographic quantum dynamics simulation--which uses efficient quantum data compression afforded by quantum tensor networks along with opportunistic mid-circuit measurement and qubit reuse to simulate physical systems that have far more quantum degrees of freedom than can be captured by the available number of qubits. Using a Honeywell trapped ion quantum processor, we simulate the non-integrable (chaotic) dynamics of the self-dual kicked Ising model starting from an entangled state of \(32\) spins using at most \(9\) trapped ion qubits, obtaining excellent quantitative agreement when benchmarking against dynamics computed directly in the thermodynamic limit via recently developed exact analytical techniques. These results suggest that quantum tensor network methods, together with state-of-the-art quantum processor capabilities, enable a viable path to practical quantum advantage in the near term. |
doi_str_mv | 10.48550/arxiv.2105.09324 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2530248403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2530248403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-509bd2a3c40bdac74a28225ba3c78751d6ef0ed4ea2d9d42d3ef93396fbba8ed3</originalsourceid><addsrcrecordid>eNotjctqwzAQRUWh0JDmA7oTdG1XnpFseVnSRwqBbrIPY0tuFGzLsaQ-_r6GdnXgcLiXsbtC5FIrJR5o_nafORRC5aJGkFdsBYhFpiXADduEcBZCQFmBUrhiTzvf-4-ZppNrufkZaXBt4MENqafo_Bj4l4snTjwuzWQNXxy_JBpjGnjrhylFO9-y6476YDf_XLPDy_Nhu8v2769v28d9RgowU6JuDBC2UjSG2koSaADVLKbSlSpMaTthjbQEpjYSDNquRqzLrmlIW4Nrdv83O83-kmyIx7NP87g8HkGhAKmlQPwFj65N8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530248403</pqid></control><display><type>article</type><title>Holographic dynamics simulations with a trapped ion quantum computer</title><source>Publicly Available Content (ProQuest)</source><creator>Chertkov, Eli ; Bohnet, Justin ; Francois, David ; Gaebler, John ; Gresh, Dan ; Hankin, Aaron ; Lee, Kenny ; Tobey, Ra'anan ; Hayes, David ; Neyenhuis, Brian ; Stutz, Russell ; Potter, Andrew C ; Foss-Feig, Michael</creator><creatorcontrib>Chertkov, Eli ; Bohnet, Justin ; Francois, David ; Gaebler, John ; Gresh, Dan ; Hankin, Aaron ; Lee, Kenny ; Tobey, Ra'anan ; Hayes, David ; Neyenhuis, Brian ; Stutz, Russell ; Potter, Andrew C ; Foss-Feig, Michael</creatorcontrib><description>Quantum computers have the potential to efficiently simulate the dynamics of many interacting quantum particles, a classically intractable task of central importance to fields ranging from chemistry to high-energy physics. However, precision and memory limitations of existing hardware severely limit the size and complexity of models that can be simulated with conventional methods. Here, we demonstrate and benchmark a new scalable quantum simulation paradigm--holographic quantum dynamics simulation--which uses efficient quantum data compression afforded by quantum tensor networks along with opportunistic mid-circuit measurement and qubit reuse to simulate physical systems that have far more quantum degrees of freedom than can be captured by the available number of qubits. Using a Honeywell trapped ion quantum processor, we simulate the non-integrable (chaotic) dynamics of the self-dual kicked Ising model starting from an entangled state of \(32\) spins using at most \(9\) trapped ion qubits, obtaining excellent quantitative agreement when benchmarking against dynamics computed directly in the thermodynamic limit via recently developed exact analytical techniques. These results suggest that quantum tensor network methods, together with state-of-the-art quantum processor capabilities, enable a viable path to practical quantum advantage in the near term.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2105.09324</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Circuits ; Data compression ; Dynamics ; Entangled states ; Holography ; Ising model ; Mathematical analysis ; Microprocessors ; Quantum computers ; Qubits (quantum computing) ; Simulation ; Tensors</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2530248403?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Chertkov, Eli</creatorcontrib><creatorcontrib>Bohnet, Justin</creatorcontrib><creatorcontrib>Francois, David</creatorcontrib><creatorcontrib>Gaebler, John</creatorcontrib><creatorcontrib>Gresh, Dan</creatorcontrib><creatorcontrib>Hankin, Aaron</creatorcontrib><creatorcontrib>Lee, Kenny</creatorcontrib><creatorcontrib>Tobey, Ra'anan</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Stutz, Russell</creatorcontrib><creatorcontrib>Potter, Andrew C</creatorcontrib><creatorcontrib>Foss-Feig, Michael</creatorcontrib><title>Holographic dynamics simulations with a trapped ion quantum computer</title><title>arXiv.org</title><description>Quantum computers have the potential to efficiently simulate the dynamics of many interacting quantum particles, a classically intractable task of central importance to fields ranging from chemistry to high-energy physics. However, precision and memory limitations of existing hardware severely limit the size and complexity of models that can be simulated with conventional methods. Here, we demonstrate and benchmark a new scalable quantum simulation paradigm--holographic quantum dynamics simulation--which uses efficient quantum data compression afforded by quantum tensor networks along with opportunistic mid-circuit measurement and qubit reuse to simulate physical systems that have far more quantum degrees of freedom than can be captured by the available number of qubits. Using a Honeywell trapped ion quantum processor, we simulate the non-integrable (chaotic) dynamics of the self-dual kicked Ising model starting from an entangled state of \(32\) spins using at most \(9\) trapped ion qubits, obtaining excellent quantitative agreement when benchmarking against dynamics computed directly in the thermodynamic limit via recently developed exact analytical techniques. These results suggest that quantum tensor network methods, together with state-of-the-art quantum processor capabilities, enable a viable path to practical quantum advantage in the near term.</description><subject>Circuits</subject><subject>Data compression</subject><subject>Dynamics</subject><subject>Entangled states</subject><subject>Holography</subject><subject>Ising model</subject><subject>Mathematical analysis</subject><subject>Microprocessors</subject><subject>Quantum computers</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAQRUWh0JDmA7oTdG1XnpFseVnSRwqBbrIPY0tuFGzLsaQ-_r6GdnXgcLiXsbtC5FIrJR5o_nafORRC5aJGkFdsBYhFpiXADduEcBZCQFmBUrhiTzvf-4-ZppNrufkZaXBt4MENqafo_Bj4l4snTjwuzWQNXxy_JBpjGnjrhylFO9-y6476YDf_XLPDy_Nhu8v2769v28d9RgowU6JuDBC2UjSG2koSaADVLKbSlSpMaTthjbQEpjYSDNquRqzLrmlIW4Nrdv83O83-kmyIx7NP87g8HkGhAKmlQPwFj65N8A</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>Chertkov, Eli</creator><creator>Bohnet, Justin</creator><creator>Francois, David</creator><creator>Gaebler, John</creator><creator>Gresh, Dan</creator><creator>Hankin, Aaron</creator><creator>Lee, Kenny</creator><creator>Tobey, Ra'anan</creator><creator>Hayes, David</creator><creator>Neyenhuis, Brian</creator><creator>Stutz, Russell</creator><creator>Potter, Andrew C</creator><creator>Foss-Feig, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210519</creationdate><title>Holographic dynamics simulations with a trapped ion quantum computer</title><author>Chertkov, Eli ; Bohnet, Justin ; Francois, David ; Gaebler, John ; Gresh, Dan ; Hankin, Aaron ; Lee, Kenny ; Tobey, Ra'anan ; Hayes, David ; Neyenhuis, Brian ; Stutz, Russell ; Potter, Andrew C ; Foss-Feig, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-509bd2a3c40bdac74a28225ba3c78751d6ef0ed4ea2d9d42d3ef93396fbba8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuits</topic><topic>Data compression</topic><topic>Dynamics</topic><topic>Entangled states</topic><topic>Holography</topic><topic>Ising model</topic><topic>Mathematical analysis</topic><topic>Microprocessors</topic><topic>Quantum computers</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Chertkov, Eli</creatorcontrib><creatorcontrib>Bohnet, Justin</creatorcontrib><creatorcontrib>Francois, David</creatorcontrib><creatorcontrib>Gaebler, John</creatorcontrib><creatorcontrib>Gresh, Dan</creatorcontrib><creatorcontrib>Hankin, Aaron</creatorcontrib><creatorcontrib>Lee, Kenny</creatorcontrib><creatorcontrib>Tobey, Ra'anan</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Stutz, Russell</creatorcontrib><creatorcontrib>Potter, Andrew C</creatorcontrib><creatorcontrib>Foss-Feig, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chertkov, Eli</au><au>Bohnet, Justin</au><au>Francois, David</au><au>Gaebler, John</au><au>Gresh, Dan</au><au>Hankin, Aaron</au><au>Lee, Kenny</au><au>Tobey, Ra'anan</au><au>Hayes, David</au><au>Neyenhuis, Brian</au><au>Stutz, Russell</au><au>Potter, Andrew C</au><au>Foss-Feig, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holographic dynamics simulations with a trapped ion quantum computer</atitle><jtitle>arXiv.org</jtitle><date>2021-05-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Quantum computers have the potential to efficiently simulate the dynamics of many interacting quantum particles, a classically intractable task of central importance to fields ranging from chemistry to high-energy physics. However, precision and memory limitations of existing hardware severely limit the size and complexity of models that can be simulated with conventional methods. Here, we demonstrate and benchmark a new scalable quantum simulation paradigm--holographic quantum dynamics simulation--which uses efficient quantum data compression afforded by quantum tensor networks along with opportunistic mid-circuit measurement and qubit reuse to simulate physical systems that have far more quantum degrees of freedom than can be captured by the available number of qubits. Using a Honeywell trapped ion quantum processor, we simulate the non-integrable (chaotic) dynamics of the self-dual kicked Ising model starting from an entangled state of \(32\) spins using at most \(9\) trapped ion qubits, obtaining excellent quantitative agreement when benchmarking against dynamics computed directly in the thermodynamic limit via recently developed exact analytical techniques. These results suggest that quantum tensor network methods, together with state-of-the-art quantum processor capabilities, enable a viable path to practical quantum advantage in the near term.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2105.09324</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2530248403 |
source | Publicly Available Content (ProQuest) |
subjects | Circuits Data compression Dynamics Entangled states Holography Ising model Mathematical analysis Microprocessors Quantum computers Qubits (quantum computing) Simulation Tensors |
title | Holographic dynamics simulations with a trapped ion quantum computer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holographic%20dynamics%20simulations%20with%20a%20trapped%20ion%20quantum%20computer&rft.jtitle=arXiv.org&rft.au=Chertkov,%20Eli&rft.date=2021-05-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2105.09324&rft_dat=%3Cproquest%3E2530248403%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-509bd2a3c40bdac74a28225ba3c78751d6ef0ed4ea2d9d42d3ef93396fbba8ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530248403&rft_id=info:pmid/&rfr_iscdi=true |