Loading…
Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review
Indoor pollution of air by formaldehyde poses a serious threat to human health because formaldehyde causes illnesses and discomfort even at low levels, thus calling for abatement techniques. Techniques include absorption, physisorption, chemisorption, biological and botanical filtration, photocataly...
Saved in:
Published in: | Environmental chemistry letters 2021-06, Vol.19 (3), p.2551-2579 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3 |
container_end_page | 2579 |
container_issue | 3 |
container_start_page | 2551 |
container_title | Environmental chemistry letters |
container_volume | 19 |
creator | Robert, Berly Nallathambi, Gobi |
description | Indoor pollution of air by formaldehyde poses a serious threat to human health because formaldehyde causes illnesses and discomfort even at low levels, thus calling for abatement techniques. Techniques include absorption, physisorption, chemisorption, biological and botanical filtration, photocatalytic decomposition, membrane separation, plasma and catalytic oxidation. Here we review the principles, performances, advantages and disadvantages of these techniques, with focus on catalytic oxidation, adsorption and the use of nanofibrous membranes. Supported noble metal and metal oxide-based materials are efficient catalysts for oxidation. We present photocatalytic oxidation under UV, visible and solar light using composites. Chemisorption method is reviewed with focus on amino-containing adsorbents, conditions of temperature and relative humidity and surface properties. Nanofibrous membranes display high density of active sites for pollutant interactions and allow formaldehyde removal without leaching out of catalyst nanoparticles or adsorbents. |
doi_str_mv | 10.1007/s10311-020-01168-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2530598070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2530598070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWWAmcY8d2yoYqLpUqscBsObYDqZK42Gkhb09KEWxM5x_-i85HyDnCFQKo64TAETNgkAGiLDJ5QCYoETIuJR7-asGPyUlKKwDGFGMTUi46F0KkVYitaZx_G5yn0bdhaxpaDtSa3jRDX1saPmtn-jp0l9S4FOJ6p6npHO1MF6q6jGGTaOvbMprOpxtqxp5t7T9OyVFlmuTPfu6UvNzfPc8fs-XTw2J-u8wsx1mfMZtzJXB8p1Q5q2ThnDAs9whoDVrr8wpnguelY8wI4SSXqlBeQZEjB2v5lFzse9cxvG986vUqbGI3TmomOIhZAQpGF9u7bAwpRV_pdaxbEweNoHcs9Z6lHlnqb5ZajiG-D6XR3L36-Ff9T-oLzdF3Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530598070</pqid></control><display><type>article</type><title>Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review</title><source>Springer Nature</source><creator>Robert, Berly ; Nallathambi, Gobi</creator><creatorcontrib>Robert, Berly ; Nallathambi, Gobi</creatorcontrib><description>Indoor pollution of air by formaldehyde poses a serious threat to human health because formaldehyde causes illnesses and discomfort even at low levels, thus calling for abatement techniques. Techniques include absorption, physisorption, chemisorption, biological and botanical filtration, photocatalytic decomposition, membrane separation, plasma and catalytic oxidation. Here we review the principles, performances, advantages and disadvantages of these techniques, with focus on catalytic oxidation, adsorption and the use of nanofibrous membranes. Supported noble metal and metal oxide-based materials are efficient catalysts for oxidation. We present photocatalytic oxidation under UV, visible and solar light using composites. Chemisorption method is reviewed with focus on amino-containing adsorbents, conditions of temperature and relative humidity and surface properties. Nanofibrous membranes display high density of active sites for pollutant interactions and allow formaldehyde removal without leaching out of catalyst nanoparticles or adsorbents.</description><identifier>ISSN: 1610-3653</identifier><identifier>EISSN: 1610-3661</identifier><identifier>DOI: 10.1007/s10311-020-01168-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adsorbents ; Adsorption ; Air pollution ; Analytical Chemistry ; Biofiltration ; Catalysts ; Catalytic oxidation ; Chemisorption ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Formaldehyde ; Geochemistry ; Indoor air pollution ; Indoor air quality ; Leaching ; Membrane separation ; Membranes ; Metal oxides ; Metals ; Nanoparticles ; Noble metals ; Oxidation ; Photocatalysis ; Photooxidation ; Pollutants ; Pollution ; Relative humidity ; Removal ; Review ; Surface properties ; Ultraviolet radiation</subject><ispartof>Environmental chemistry letters, 2021-06, Vol.19 (3), p.2551-2579</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3</citedby><cites>FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3</cites><orcidid>0000-0002-1650-9894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Robert, Berly</creatorcontrib><creatorcontrib>Nallathambi, Gobi</creatorcontrib><title>Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review</title><title>Environmental chemistry letters</title><addtitle>Environ Chem Lett</addtitle><description>Indoor pollution of air by formaldehyde poses a serious threat to human health because formaldehyde causes illnesses and discomfort even at low levels, thus calling for abatement techniques. Techniques include absorption, physisorption, chemisorption, biological and botanical filtration, photocatalytic decomposition, membrane separation, plasma and catalytic oxidation. Here we review the principles, performances, advantages and disadvantages of these techniques, with focus on catalytic oxidation, adsorption and the use of nanofibrous membranes. Supported noble metal and metal oxide-based materials are efficient catalysts for oxidation. We present photocatalytic oxidation under UV, visible and solar light using composites. Chemisorption method is reviewed with focus on amino-containing adsorbents, conditions of temperature and relative humidity and surface properties. Nanofibrous membranes display high density of active sites for pollutant interactions and allow formaldehyde removal without leaching out of catalyst nanoparticles or adsorbents.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Air pollution</subject><subject>Analytical Chemistry</subject><subject>Biofiltration</subject><subject>Catalysts</subject><subject>Catalytic oxidation</subject><subject>Chemisorption</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Formaldehyde</subject><subject>Geochemistry</subject><subject>Indoor air pollution</subject><subject>Indoor air quality</subject><subject>Leaching</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photooxidation</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Relative humidity</subject><subject>Removal</subject><subject>Review</subject><subject>Surface properties</subject><subject>Ultraviolet radiation</subject><issn>1610-3653</issn><issn>1610-3661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWWAmcY8d2yoYqLpUqscBsObYDqZK42Gkhb09KEWxM5x_-i85HyDnCFQKo64TAETNgkAGiLDJ5QCYoETIuJR7-asGPyUlKKwDGFGMTUi46F0KkVYitaZx_G5yn0bdhaxpaDtSa3jRDX1saPmtn-jp0l9S4FOJ6p6npHO1MF6q6jGGTaOvbMprOpxtqxp5t7T9OyVFlmuTPfu6UvNzfPc8fs-XTw2J-u8wsx1mfMZtzJXB8p1Q5q2ThnDAs9whoDVrr8wpnguelY8wI4SSXqlBeQZEjB2v5lFzse9cxvG986vUqbGI3TmomOIhZAQpGF9u7bAwpRV_pdaxbEweNoHcs9Z6lHlnqb5ZajiG-D6XR3L36-Ff9T-oLzdF3Lg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Robert, Berly</creator><creator>Nallathambi, Gobi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1650-9894</orcidid></search><sort><creationdate>20210601</creationdate><title>Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review</title><author>Robert, Berly ; Nallathambi, Gobi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Air pollution</topic><topic>Analytical Chemistry</topic><topic>Biofiltration</topic><topic>Catalysts</topic><topic>Catalytic oxidation</topic><topic>Chemisorption</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Formaldehyde</topic><topic>Geochemistry</topic><topic>Indoor air pollution</topic><topic>Indoor air quality</topic><topic>Leaching</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photooxidation</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Relative humidity</topic><topic>Removal</topic><topic>Review</topic><topic>Surface properties</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robert, Berly</creatorcontrib><creatorcontrib>Nallathambi, Gobi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robert, Berly</au><au>Nallathambi, Gobi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review</atitle><jtitle>Environmental chemistry letters</jtitle><stitle>Environ Chem Lett</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>19</volume><issue>3</issue><spage>2551</spage><epage>2579</epage><pages>2551-2579</pages><issn>1610-3653</issn><eissn>1610-3661</eissn><abstract>Indoor pollution of air by formaldehyde poses a serious threat to human health because formaldehyde causes illnesses and discomfort even at low levels, thus calling for abatement techniques. Techniques include absorption, physisorption, chemisorption, biological and botanical filtration, photocatalytic decomposition, membrane separation, plasma and catalytic oxidation. Here we review the principles, performances, advantages and disadvantages of these techniques, with focus on catalytic oxidation, adsorption and the use of nanofibrous membranes. Supported noble metal and metal oxide-based materials are efficient catalysts for oxidation. We present photocatalytic oxidation under UV, visible and solar light using composites. Chemisorption method is reviewed with focus on amino-containing adsorbents, conditions of temperature and relative humidity and surface properties. Nanofibrous membranes display high density of active sites for pollutant interactions and allow formaldehyde removal without leaching out of catalyst nanoparticles or adsorbents.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10311-020-01168-6</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-1650-9894</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-3653 |
ispartof | Environmental chemistry letters, 2021-06, Vol.19 (3), p.2551-2579 |
issn | 1610-3653 1610-3661 |
language | eng |
recordid | cdi_proquest_journals_2530598070 |
source | Springer Nature |
subjects | Adsorbents Adsorption Air pollution Analytical Chemistry Biofiltration Catalysts Catalytic oxidation Chemisorption Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Formaldehyde Geochemistry Indoor air pollution Indoor air quality Leaching Membrane separation Membranes Metal oxides Metals Nanoparticles Noble metals Oxidation Photocatalysis Photooxidation Pollutants Pollution Relative humidity Removal Review Surface properties Ultraviolet radiation |
title | Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indoor%20formaldehyde%20removal%20by%20catalytic%20oxidation,%20adsorption%20and%20nanofibrous%20membranes:%20a%20review&rft.jtitle=Environmental%20chemistry%20letters&rft.au=Robert,%20Berly&rft.date=2021-06-01&rft.volume=19&rft.issue=3&rft.spage=2551&rft.epage=2579&rft.pages=2551-2579&rft.issn=1610-3653&rft.eissn=1610-3661&rft_id=info:doi/10.1007/s10311-020-01168-6&rft_dat=%3Cproquest_cross%3E2530598070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530598070&rft_id=info:pmid/&rfr_iscdi=true |