Loading…

Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review

Indoor pollution of air by formaldehyde poses a serious threat to human health because formaldehyde causes illnesses and discomfort even at low levels, thus calling for abatement techniques. Techniques include absorption, physisorption, chemisorption, biological and botanical filtration, photocataly...

Full description

Saved in:
Bibliographic Details
Published in:Environmental chemistry letters 2021-06, Vol.19 (3), p.2551-2579
Main Authors: Robert, Berly, Nallathambi, Gobi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3
cites cdi_FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3
container_end_page 2579
container_issue 3
container_start_page 2551
container_title Environmental chemistry letters
container_volume 19
creator Robert, Berly
Nallathambi, Gobi
description Indoor pollution of air by formaldehyde poses a serious threat to human health because formaldehyde causes illnesses and discomfort even at low levels, thus calling for abatement techniques. Techniques include absorption, physisorption, chemisorption, biological and botanical filtration, photocatalytic decomposition, membrane separation, plasma and catalytic oxidation. Here we review the principles, performances, advantages and disadvantages of these techniques, with focus on catalytic oxidation, adsorption and the use of nanofibrous membranes. Supported noble metal and metal oxide-based materials are efficient catalysts for oxidation. We present photocatalytic oxidation under UV, visible and solar light using composites. Chemisorption method is reviewed with focus on amino-containing adsorbents, conditions of temperature and relative humidity and surface properties. Nanofibrous membranes display high density of active sites for pollutant interactions and allow formaldehyde removal without leaching out of catalyst nanoparticles or adsorbents.
doi_str_mv 10.1007/s10311-020-01168-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2530598070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2530598070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWWAmcY8d2yoYqLpUqscBsObYDqZK42Gkhb09KEWxM5x_-i85HyDnCFQKo64TAETNgkAGiLDJ5QCYoETIuJR7-asGPyUlKKwDGFGMTUi46F0KkVYitaZx_G5yn0bdhaxpaDtSa3jRDX1saPmtn-jp0l9S4FOJ6p6npHO1MF6q6jGGTaOvbMprOpxtqxp5t7T9OyVFlmuTPfu6UvNzfPc8fs-XTw2J-u8wsx1mfMZtzJXB8p1Q5q2ThnDAs9whoDVrr8wpnguelY8wI4SSXqlBeQZEjB2v5lFzse9cxvG986vUqbGI3TmomOIhZAQpGF9u7bAwpRV_pdaxbEweNoHcs9Z6lHlnqb5ZajiG-D6XR3L36-Ff9T-oLzdF3Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530598070</pqid></control><display><type>article</type><title>Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review</title><source>Springer Nature</source><creator>Robert, Berly ; Nallathambi, Gobi</creator><creatorcontrib>Robert, Berly ; Nallathambi, Gobi</creatorcontrib><description>Indoor pollution of air by formaldehyde poses a serious threat to human health because formaldehyde causes illnesses and discomfort even at low levels, thus calling for abatement techniques. Techniques include absorption, physisorption, chemisorption, biological and botanical filtration, photocatalytic decomposition, membrane separation, plasma and catalytic oxidation. Here we review the principles, performances, advantages and disadvantages of these techniques, with focus on catalytic oxidation, adsorption and the use of nanofibrous membranes. Supported noble metal and metal oxide-based materials are efficient catalysts for oxidation. We present photocatalytic oxidation under UV, visible and solar light using composites. Chemisorption method is reviewed with focus on amino-containing adsorbents, conditions of temperature and relative humidity and surface properties. Nanofibrous membranes display high density of active sites for pollutant interactions and allow formaldehyde removal without leaching out of catalyst nanoparticles or adsorbents.</description><identifier>ISSN: 1610-3653</identifier><identifier>EISSN: 1610-3661</identifier><identifier>DOI: 10.1007/s10311-020-01168-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adsorbents ; Adsorption ; Air pollution ; Analytical Chemistry ; Biofiltration ; Catalysts ; Catalytic oxidation ; Chemisorption ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Formaldehyde ; Geochemistry ; Indoor air pollution ; Indoor air quality ; Leaching ; Membrane separation ; Membranes ; Metal oxides ; Metals ; Nanoparticles ; Noble metals ; Oxidation ; Photocatalysis ; Photooxidation ; Pollutants ; Pollution ; Relative humidity ; Removal ; Review ; Surface properties ; Ultraviolet radiation</subject><ispartof>Environmental chemistry letters, 2021-06, Vol.19 (3), p.2551-2579</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3</citedby><cites>FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3</cites><orcidid>0000-0002-1650-9894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Robert, Berly</creatorcontrib><creatorcontrib>Nallathambi, Gobi</creatorcontrib><title>Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review</title><title>Environmental chemistry letters</title><addtitle>Environ Chem Lett</addtitle><description>Indoor pollution of air by formaldehyde poses a serious threat to human health because formaldehyde causes illnesses and discomfort even at low levels, thus calling for abatement techniques. Techniques include absorption, physisorption, chemisorption, biological and botanical filtration, photocatalytic decomposition, membrane separation, plasma and catalytic oxidation. Here we review the principles, performances, advantages and disadvantages of these techniques, with focus on catalytic oxidation, adsorption and the use of nanofibrous membranes. Supported noble metal and metal oxide-based materials are efficient catalysts for oxidation. We present photocatalytic oxidation under UV, visible and solar light using composites. Chemisorption method is reviewed with focus on amino-containing adsorbents, conditions of temperature and relative humidity and surface properties. Nanofibrous membranes display high density of active sites for pollutant interactions and allow formaldehyde removal without leaching out of catalyst nanoparticles or adsorbents.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Air pollution</subject><subject>Analytical Chemistry</subject><subject>Biofiltration</subject><subject>Catalysts</subject><subject>Catalytic oxidation</subject><subject>Chemisorption</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Formaldehyde</subject><subject>Geochemistry</subject><subject>Indoor air pollution</subject><subject>Indoor air quality</subject><subject>Leaching</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photooxidation</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Relative humidity</subject><subject>Removal</subject><subject>Review</subject><subject>Surface properties</subject><subject>Ultraviolet radiation</subject><issn>1610-3653</issn><issn>1610-3661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWWAmcY8d2yoYqLpUqscBsObYDqZK42Gkhb09KEWxM5x_-i85HyDnCFQKo64TAETNgkAGiLDJ5QCYoETIuJR7-asGPyUlKKwDGFGMTUi46F0KkVYitaZx_G5yn0bdhaxpaDtSa3jRDX1saPmtn-jp0l9S4FOJ6p6npHO1MF6q6jGGTaOvbMprOpxtqxp5t7T9OyVFlmuTPfu6UvNzfPc8fs-XTw2J-u8wsx1mfMZtzJXB8p1Q5q2ThnDAs9whoDVrr8wpnguelY8wI4SSXqlBeQZEjB2v5lFzse9cxvG986vUqbGI3TmomOIhZAQpGF9u7bAwpRV_pdaxbEweNoHcs9Z6lHlnqb5ZajiG-D6XR3L36-Ff9T-oLzdF3Lg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Robert, Berly</creator><creator>Nallathambi, Gobi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1650-9894</orcidid></search><sort><creationdate>20210601</creationdate><title>Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review</title><author>Robert, Berly ; Nallathambi, Gobi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Air pollution</topic><topic>Analytical Chemistry</topic><topic>Biofiltration</topic><topic>Catalysts</topic><topic>Catalytic oxidation</topic><topic>Chemisorption</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Formaldehyde</topic><topic>Geochemistry</topic><topic>Indoor air pollution</topic><topic>Indoor air quality</topic><topic>Leaching</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photooxidation</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Relative humidity</topic><topic>Removal</topic><topic>Review</topic><topic>Surface properties</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robert, Berly</creatorcontrib><creatorcontrib>Nallathambi, Gobi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robert, Berly</au><au>Nallathambi, Gobi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review</atitle><jtitle>Environmental chemistry letters</jtitle><stitle>Environ Chem Lett</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>19</volume><issue>3</issue><spage>2551</spage><epage>2579</epage><pages>2551-2579</pages><issn>1610-3653</issn><eissn>1610-3661</eissn><abstract>Indoor pollution of air by formaldehyde poses a serious threat to human health because formaldehyde causes illnesses and discomfort even at low levels, thus calling for abatement techniques. Techniques include absorption, physisorption, chemisorption, biological and botanical filtration, photocatalytic decomposition, membrane separation, plasma and catalytic oxidation. Here we review the principles, performances, advantages and disadvantages of these techniques, with focus on catalytic oxidation, adsorption and the use of nanofibrous membranes. Supported noble metal and metal oxide-based materials are efficient catalysts for oxidation. We present photocatalytic oxidation under UV, visible and solar light using composites. Chemisorption method is reviewed with focus on amino-containing adsorbents, conditions of temperature and relative humidity and surface properties. Nanofibrous membranes display high density of active sites for pollutant interactions and allow formaldehyde removal without leaching out of catalyst nanoparticles or adsorbents.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10311-020-01168-6</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-1650-9894</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1610-3653
ispartof Environmental chemistry letters, 2021-06, Vol.19 (3), p.2551-2579
issn 1610-3653
1610-3661
language eng
recordid cdi_proquest_journals_2530598070
source Springer Nature
subjects Adsorbents
Adsorption
Air pollution
Analytical Chemistry
Biofiltration
Catalysts
Catalytic oxidation
Chemisorption
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Formaldehyde
Geochemistry
Indoor air pollution
Indoor air quality
Leaching
Membrane separation
Membranes
Metal oxides
Metals
Nanoparticles
Noble metals
Oxidation
Photocatalysis
Photooxidation
Pollutants
Pollution
Relative humidity
Removal
Review
Surface properties
Ultraviolet radiation
title Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indoor%20formaldehyde%20removal%20by%20catalytic%20oxidation,%20adsorption%20and%20nanofibrous%20membranes:%20a%20review&rft.jtitle=Environmental%20chemistry%20letters&rft.au=Robert,%20Berly&rft.date=2021-06-01&rft.volume=19&rft.issue=3&rft.spage=2551&rft.epage=2579&rft.pages=2551-2579&rft.issn=1610-3653&rft.eissn=1610-3661&rft_id=info:doi/10.1007/s10311-020-01168-6&rft_dat=%3Cproquest_cross%3E2530598070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2c43751100b742f68dd5a24e101ca1cce4f19534bd22a55d636787e7084130cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530598070&rft_id=info:pmid/&rfr_iscdi=true