Loading…

On the Possibility of Indirect Determination of the Glass Transition Temperature of Proteins from Viscosity Measurements and Avramov's Model

The paper presents the results of viscosity determinations on aqueous solutions of hen egg-white lysozyme, bovine ß-lactoglobulin, human and porcine immunoglobulin IgG at a wide range of concentrations and at temperatures ranging from 5 C to 55 C. Viscosity-temperature dependence of the proteins sol...

Full description

Saved in:
Bibliographic Details
Published in:Current Topics in Biophysics 2015-01, Vol.37 (1), p.63-70
Main Author: Monkos, Karol
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2283-1c912e5b89c7ee6986e1f8ef3d2a0e91a4845590a6f53154e5dae776c1082fd33
cites
container_end_page 70
container_issue 1
container_start_page 63
container_title Current Topics in Biophysics
container_volume 37
creator Monkos, Karol
description The paper presents the results of viscosity determinations on aqueous solutions of hen egg-white lysozyme, bovine ß-lactoglobulin, human and porcine immunoglobulin IgG at a wide range of concentrations and at temperatures ranging from 5 C to 55 C. Viscosity-temperature dependence of the proteins solutions is analyzed based on a formula resulting from the Avramov's model. One of the parameters in the Avramov's equation is the glass transition temperature T . It turns out that for all studied proteins, the Tg of the solution increases with increasing concentration. To determine the glass transition temperature of the dry protein Tg,p, a modified form of the Gordon-Taylor equation is used. This equation gives the relationship between Tg and the concentration of the solution, and Tg,p and a parameter dependent on the strength of protein-solvent interaction are fitting parameters. Thus determined the glass transition temperature for the studied dry proteins is in the range from 227.3 K (for bovine ß-lactoglobulin) to 260.6 K (for hen egg-white lysozyme).
doi_str_mv 10.2478/ctb-2014-0076
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2531393958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3752212061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2283-1c912e5b89c7ee6986e1f8ef3d2a0e91a4845590a6f53154e5dae776c1082fd33</originalsourceid><addsrcrecordid>eNp9kT9PwzAQxSMEEhV0ZLfEwBTwn8Rx2KoCpVKrdiiskZtcwFViF9sp6nfgQ-NQhg6I6U53v3snvRdFVwTf0iQTd6VfxxSTJMY44yfRgGKRxETk9PSoP4-Gzm0wxiTlWGA-iL4WGvl3QEvjnFqrRvk9MjWa6kpZKD16AA-2VVp6ZXS_6eFJI51DKyu1Uz_zFbRbsNJ3FnpmaY0HpR2qrWnRq3Klcb3wHKQLSAvaOyR1hUY7K1uzu3FobipoLqOzWjYOhr_1Inp5elyNn-PZYjIdj2ZxSalgMSlzQiFdi7zMAHguOJBaQM0qKjHkRCYiSdMcS16njKQJpJWELOMlwYLWFWMX0fVBd2vNRwfOFxvTWR1eFjRcsJzlqfiPIuEp4cFtGqj4QJU2WGihLrZWtdLuC4KLPpkiJFP0yRR9MoG_P_CfsgnWVvBmu31ojsT_vMsIZ-wb-h-VPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698160142</pqid></control><display><type>article</type><title>On the Possibility of Indirect Determination of the Glass Transition Temperature of Proteins from Viscosity Measurements and Avramov's Model</title><source>Publicly Available Content Database</source><creator>Monkos, Karol</creator><creatorcontrib>Monkos, Karol</creatorcontrib><description>The paper presents the results of viscosity determinations on aqueous solutions of hen egg-white lysozyme, bovine ß-lactoglobulin, human and porcine immunoglobulin IgG at a wide range of concentrations and at temperatures ranging from 5 C to 55 C. Viscosity-temperature dependence of the proteins solutions is analyzed based on a formula resulting from the Avramov's model. One of the parameters in the Avramov's equation is the glass transition temperature T . It turns out that for all studied proteins, the Tg of the solution increases with increasing concentration. To determine the glass transition temperature of the dry protein Tg,p, a modified form of the Gordon-Taylor equation is used. This equation gives the relationship between Tg and the concentration of the solution, and Tg,p and a parameter dependent on the strength of protein-solvent interaction are fitting parameters. Thus determined the glass transition temperature for the studied dry proteins is in the range from 227.3 K (for bovine ß-lactoglobulin) to 260.6 K (for hen egg-white lysozyme).</description><identifier>ISSN: 2084-1892</identifier><identifier>ISSN: 1232-9630</identifier><identifier>EISSN: 2084-1892</identifier><identifier>DOI: 10.2478/ctb-2014-0076</identifier><language>eng</language><publisher>Poznań: De Gruyter Open</publisher><subject>Aqueous solutions ; Eggs ; Glass transition temperature ; Immunoglobulin G ; Interaction parameters ; Lactoglobulin ; Lysozyme ; Mathematical models ; Proteins ; Temperature ; Temperature dependence ; Transition temperatures ; Viscosity ; Viscosity measurement ; β-Lactoglobulin</subject><ispartof>Current Topics in Biophysics, 2015-01, Vol.37 (1), p.63-70</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2015</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2283-1c912e5b89c7ee6986e1f8ef3d2a0e91a4845590a6f53154e5dae776c1082fd33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2531393958?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Monkos, Karol</creatorcontrib><title>On the Possibility of Indirect Determination of the Glass Transition Temperature of Proteins from Viscosity Measurements and Avramov's Model</title><title>Current Topics in Biophysics</title><description>The paper presents the results of viscosity determinations on aqueous solutions of hen egg-white lysozyme, bovine ß-lactoglobulin, human and porcine immunoglobulin IgG at a wide range of concentrations and at temperatures ranging from 5 C to 55 C. Viscosity-temperature dependence of the proteins solutions is analyzed based on a formula resulting from the Avramov's model. One of the parameters in the Avramov's equation is the glass transition temperature T . It turns out that for all studied proteins, the Tg of the solution increases with increasing concentration. To determine the glass transition temperature of the dry protein Tg,p, a modified form of the Gordon-Taylor equation is used. This equation gives the relationship between Tg and the concentration of the solution, and Tg,p and a parameter dependent on the strength of protein-solvent interaction are fitting parameters. Thus determined the glass transition temperature for the studied dry proteins is in the range from 227.3 K (for bovine ß-lactoglobulin) to 260.6 K (for hen egg-white lysozyme).</description><subject>Aqueous solutions</subject><subject>Eggs</subject><subject>Glass transition temperature</subject><subject>Immunoglobulin G</subject><subject>Interaction parameters</subject><subject>Lactoglobulin</subject><subject>Lysozyme</subject><subject>Mathematical models</subject><subject>Proteins</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Transition temperatures</subject><subject>Viscosity</subject><subject>Viscosity measurement</subject><subject>β-Lactoglobulin</subject><issn>2084-1892</issn><issn>1232-9630</issn><issn>2084-1892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kT9PwzAQxSMEEhV0ZLfEwBTwn8Rx2KoCpVKrdiiskZtcwFViF9sp6nfgQ-NQhg6I6U53v3snvRdFVwTf0iQTd6VfxxSTJMY44yfRgGKRxETk9PSoP4-Gzm0wxiTlWGA-iL4WGvl3QEvjnFqrRvk9MjWa6kpZKD16AA-2VVp6ZXS_6eFJI51DKyu1Uz_zFbRbsNJ3FnpmaY0HpR2qrWnRq3Klcb3wHKQLSAvaOyR1hUY7K1uzu3FobipoLqOzWjYOhr_1Inp5elyNn-PZYjIdj2ZxSalgMSlzQiFdi7zMAHguOJBaQM0qKjHkRCYiSdMcS16njKQJpJWELOMlwYLWFWMX0fVBd2vNRwfOFxvTWR1eFjRcsJzlqfiPIuEp4cFtGqj4QJU2WGihLrZWtdLuC4KLPpkiJFP0yRR9MoG_P_CfsgnWVvBmu31ojsT_vMsIZ-wb-h-VPw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Monkos, Karol</creator><general>De Gruyter Open</general><general>Adam Mickiewicz University, Faculty of Physics, Molecular Biophysics Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150101</creationdate><title>On the Possibility of Indirect Determination of the Glass Transition Temperature of Proteins from Viscosity Measurements and Avramov's Model</title><author>Monkos, Karol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2283-1c912e5b89c7ee6986e1f8ef3d2a0e91a4845590a6f53154e5dae776c1082fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aqueous solutions</topic><topic>Eggs</topic><topic>Glass transition temperature</topic><topic>Immunoglobulin G</topic><topic>Interaction parameters</topic><topic>Lactoglobulin</topic><topic>Lysozyme</topic><topic>Mathematical models</topic><topic>Proteins</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Transition temperatures</topic><topic>Viscosity</topic><topic>Viscosity measurement</topic><topic>β-Lactoglobulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monkos, Karol</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Current Topics in Biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monkos, Karol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Possibility of Indirect Determination of the Glass Transition Temperature of Proteins from Viscosity Measurements and Avramov's Model</atitle><jtitle>Current Topics in Biophysics</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>37</volume><issue>1</issue><spage>63</spage><epage>70</epage><pages>63-70</pages><issn>2084-1892</issn><issn>1232-9630</issn><eissn>2084-1892</eissn><abstract>The paper presents the results of viscosity determinations on aqueous solutions of hen egg-white lysozyme, bovine ß-lactoglobulin, human and porcine immunoglobulin IgG at a wide range of concentrations and at temperatures ranging from 5 C to 55 C. Viscosity-temperature dependence of the proteins solutions is analyzed based on a formula resulting from the Avramov's model. One of the parameters in the Avramov's equation is the glass transition temperature T . It turns out that for all studied proteins, the Tg of the solution increases with increasing concentration. To determine the glass transition temperature of the dry protein Tg,p, a modified form of the Gordon-Taylor equation is used. This equation gives the relationship between Tg and the concentration of the solution, and Tg,p and a parameter dependent on the strength of protein-solvent interaction are fitting parameters. Thus determined the glass transition temperature for the studied dry proteins is in the range from 227.3 K (for bovine ß-lactoglobulin) to 260.6 K (for hen egg-white lysozyme).</abstract><cop>Poznań</cop><pub>De Gruyter Open</pub><doi>10.2478/ctb-2014-0076</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2084-1892
ispartof Current Topics in Biophysics, 2015-01, Vol.37 (1), p.63-70
issn 2084-1892
1232-9630
2084-1892
language eng
recordid cdi_proquest_journals_2531393958
source Publicly Available Content Database
subjects Aqueous solutions
Eggs
Glass transition temperature
Immunoglobulin G
Interaction parameters
Lactoglobulin
Lysozyme
Mathematical models
Proteins
Temperature
Temperature dependence
Transition temperatures
Viscosity
Viscosity measurement
β-Lactoglobulin
title On the Possibility of Indirect Determination of the Glass Transition Temperature of Proteins from Viscosity Measurements and Avramov's Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Possibility%20of%20Indirect%20Determination%20of%20the%20Glass%20Transition%20Temperature%20of%20Proteins%20from%20Viscosity%20Measurements%20and%20Avramov's%20Model&rft.jtitle=Current%20Topics%20in%20Biophysics&rft.au=Monkos,%20Karol&rft.date=2015-01-01&rft.volume=37&rft.issue=1&rft.spage=63&rft.epage=70&rft.pages=63-70&rft.issn=2084-1892&rft.eissn=2084-1892&rft_id=info:doi/10.2478/ctb-2014-0076&rft_dat=%3Cproquest_cross%3E3752212061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2283-1c912e5b89c7ee6986e1f8ef3d2a0e91a4845590a6f53154e5dae776c1082fd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1698160142&rft_id=info:pmid/&rfr_iscdi=true