Loading…

Simplified digital content generation based on an inverse-directed propagation algorithm for holographic stereogram printing

Holographic stereogram (HS) printing requires extensive memory capacity and long computation time during perspective acquisition and implementation of the pixel re-arrangement algorithm. Hogels contain very weak depth information of the object. We propose a HS printing system that uses simplified di...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2021-05, Vol.60 (14), p.4235
Main Authors: Khuderchuluun, Anar, Piao, Yan-Ling, Erdenebat, Munkh-Uchral, Dashdavaa, Erkhembaatar, Lee, Moung Hee, Jeon, Seok-Hee, Kim, Nam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Holographic stereogram (HS) printing requires extensive memory capacity and long computation time during perspective acquisition and implementation of the pixel re-arrangement algorithm. Hogels contain very weak depth information of the object. We propose a HS printing system that uses simplified digital content generation based on the inverse-directed propagation (IDP) algorithm for hogel generation. Specifically, the IDP algorithm generates an array of hogels using a simple process that acquires the full three-dimensional (3D) information of the object, including parallax, depth, color, and shading, via a computer-generated integral imaging technique. This technique requires a short computation time and is capable of accounting for occlusion and accommodation effects of the object points via the IDP algorithm. Parallel computing is utilized to produce a high-resolution hologram based on the properties of independent hogels. To demonstrate the proposed approach, optical experiments are conducted in which the natural 3D visualizations of real and virtual objects are printed on holographic material. Experimental results demonstrate the simplified computation involved in content generation using the proposed IDP-based HS printing system and the improved image quality of the holograms.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.423205