Loading…
Classifying Math KCs via Task-Adaptive Pre-Trained BERT
Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto...
Saved in:
Published in: | arXiv.org 2021-05 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jia Tracy Shen Yamashita, Michiharu Prihar, Ethan Heffernan, Neil Wu, Xintao McGrew, Sean Lee, Dongwon |
description | Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success. In this work, we significantly improve prior research by (1) expanding the input types to include KC descriptions, instructional video titles, and problem descriptions (i.e., three types of prediction task), (2) doubling the granularity of the prediction from 198 to 385 KC labels (i.e., more practical setting but much harder multinomial classification problem), (3) improving the prediction accuracies by 0.5-2.3% using Task-adaptive Pre-trained BERT, outperforming six baselines, and (4) proposing a simple evaluation measure by which we can recover 56-73% of mispredicted KC labels. All codes and data sets in the experiments are available at:https://github.com/tbs17/TAPT-BERT |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2531863104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531863104</sourcerecordid><originalsourceid>FETCH-proquest_journals_25318631043</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwd85JLC7OTKvMzEtX8E0syVDwdi5WKMtMVAhJLM7WdUxJLCjJLEtVCChK1Q0pSszMS01RcHINCuFhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjU2NDCzNjQwMTY-JUAQBsTzQ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531863104</pqid></control><display><type>article</type><title>Classifying Math KCs via Task-Adaptive Pre-Trained BERT</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jia Tracy Shen ; Yamashita, Michiharu ; Prihar, Ethan ; Heffernan, Neil ; Wu, Xintao ; McGrew, Sean ; Lee, Dongwon</creator><creatorcontrib>Jia Tracy Shen ; Yamashita, Michiharu ; Prihar, Ethan ; Heffernan, Neil ; Wu, Xintao ; McGrew, Sean ; Lee, Dongwon</creatorcontrib><description>Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success. In this work, we significantly improve prior research by (1) expanding the input types to include KC descriptions, instructional video titles, and problem descriptions (i.e., three types of prediction task), (2) doubling the granularity of the prediction from 198 to 385 KC labels (i.e., more practical setting but much harder multinomial classification problem), (3) improving the prediction accuracies by 0.5-2.3% using Task-adaptive Pre-trained BERT, outperforming six baselines, and (4) proposing a simple evaluation measure by which we can recover 56-73% of mispredicted KC labels. All codes and data sets in the experiments are available at:https://github.com/tbs17/TAPT-BERT</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Descriptions ; Education ; Labels ; Machine learning</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2531863104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Jia Tracy Shen</creatorcontrib><creatorcontrib>Yamashita, Michiharu</creatorcontrib><creatorcontrib>Prihar, Ethan</creatorcontrib><creatorcontrib>Heffernan, Neil</creatorcontrib><creatorcontrib>Wu, Xintao</creatorcontrib><creatorcontrib>McGrew, Sean</creatorcontrib><creatorcontrib>Lee, Dongwon</creatorcontrib><title>Classifying Math KCs via Task-Adaptive Pre-Trained BERT</title><title>arXiv.org</title><description>Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success. In this work, we significantly improve prior research by (1) expanding the input types to include KC descriptions, instructional video titles, and problem descriptions (i.e., three types of prediction task), (2) doubling the granularity of the prediction from 198 to 385 KC labels (i.e., more practical setting but much harder multinomial classification problem), (3) improving the prediction accuracies by 0.5-2.3% using Task-adaptive Pre-trained BERT, outperforming six baselines, and (4) proposing a simple evaluation measure by which we can recover 56-73% of mispredicted KC labels. All codes and data sets in the experiments are available at:https://github.com/tbs17/TAPT-BERT</description><subject>Classification</subject><subject>Descriptions</subject><subject>Education</subject><subject>Labels</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwd85JLC7OTKvMzEtX8E0syVDwdi5WKMtMVAhJLM7WdUxJLCjJLEtVCChK1Q0pSszMS01RcHINCuFhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjU2NDCzNjQwMTY-JUAQBsTzQ7</recordid><startdate>20210524</startdate><enddate>20210524</enddate><creator>Jia Tracy Shen</creator><creator>Yamashita, Michiharu</creator><creator>Prihar, Ethan</creator><creator>Heffernan, Neil</creator><creator>Wu, Xintao</creator><creator>McGrew, Sean</creator><creator>Lee, Dongwon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210524</creationdate><title>Classifying Math KCs via Task-Adaptive Pre-Trained BERT</title><author>Jia Tracy Shen ; Yamashita, Michiharu ; Prihar, Ethan ; Heffernan, Neil ; Wu, Xintao ; McGrew, Sean ; Lee, Dongwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25318631043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Descriptions</topic><topic>Education</topic><topic>Labels</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Jia Tracy Shen</creatorcontrib><creatorcontrib>Yamashita, Michiharu</creatorcontrib><creatorcontrib>Prihar, Ethan</creatorcontrib><creatorcontrib>Heffernan, Neil</creatorcontrib><creatorcontrib>Wu, Xintao</creatorcontrib><creatorcontrib>McGrew, Sean</creatorcontrib><creatorcontrib>Lee, Dongwon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia Tracy Shen</au><au>Yamashita, Michiharu</au><au>Prihar, Ethan</au><au>Heffernan, Neil</au><au>Wu, Xintao</au><au>McGrew, Sean</au><au>Lee, Dongwon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Classifying Math KCs via Task-Adaptive Pre-Trained BERT</atitle><jtitle>arXiv.org</jtitle><date>2021-05-24</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success. In this work, we significantly improve prior research by (1) expanding the input types to include KC descriptions, instructional video titles, and problem descriptions (i.e., three types of prediction task), (2) doubling the granularity of the prediction from 198 to 385 KC labels (i.e., more practical setting but much harder multinomial classification problem), (3) improving the prediction accuracies by 0.5-2.3% using Task-adaptive Pre-trained BERT, outperforming six baselines, and (4) proposing a simple evaluation measure by which we can recover 56-73% of mispredicted KC labels. All codes and data sets in the experiments are available at:https://github.com/tbs17/TAPT-BERT</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2531863104 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Classification Descriptions Education Labels Machine learning |
title | Classifying Math KCs via Task-Adaptive Pre-Trained BERT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Classifying%20Math%20KCs%20via%20Task-Adaptive%20Pre-Trained%20BERT&rft.jtitle=arXiv.org&rft.au=Jia%20Tracy%20Shen&rft.date=2021-05-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2531863104%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25318631043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2531863104&rft_id=info:pmid/&rfr_iscdi=true |