Loading…

Classifying Math KCs via Task-Adaptive Pre-Trained BERT

Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-05
Main Authors: Jia Tracy Shen, Yamashita, Michiharu, Prihar, Ethan, Heffernan, Neil, Wu, Xintao, McGrew, Sean, Lee, Dongwon
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jia Tracy Shen
Yamashita, Michiharu
Prihar, Ethan
Heffernan, Neil
Wu, Xintao
McGrew, Sean
Lee, Dongwon
description Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success. In this work, we significantly improve prior research by (1) expanding the input types to include KC descriptions, instructional video titles, and problem descriptions (i.e., three types of prediction task), (2) doubling the granularity of the prediction from 198 to 385 KC labels (i.e., more practical setting but much harder multinomial classification problem), (3) improving the prediction accuracies by 0.5-2.3% using Task-adaptive Pre-trained BERT, outperforming six baselines, and (4) proposing a simple evaluation measure by which we can recover 56-73% of mispredicted KC labels. All codes and data sets in the experiments are available at:https://github.com/tbs17/TAPT-BERT
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2531863104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531863104</sourcerecordid><originalsourceid>FETCH-proquest_journals_25318631043</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwd85JLC7OTKvMzEtX8E0syVDwdi5WKMtMVAhJLM7WdUxJLCjJLEtVCChK1Q0pSszMS01RcHINCuFhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjU2NDCzNjQwMTY-JUAQBsTzQ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531863104</pqid></control><display><type>article</type><title>Classifying Math KCs via Task-Adaptive Pre-Trained BERT</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jia Tracy Shen ; Yamashita, Michiharu ; Prihar, Ethan ; Heffernan, Neil ; Wu, Xintao ; McGrew, Sean ; Lee, Dongwon</creator><creatorcontrib>Jia Tracy Shen ; Yamashita, Michiharu ; Prihar, Ethan ; Heffernan, Neil ; Wu, Xintao ; McGrew, Sean ; Lee, Dongwon</creatorcontrib><description>Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success. In this work, we significantly improve prior research by (1) expanding the input types to include KC descriptions, instructional video titles, and problem descriptions (i.e., three types of prediction task), (2) doubling the granularity of the prediction from 198 to 385 KC labels (i.e., more practical setting but much harder multinomial classification problem), (3) improving the prediction accuracies by 0.5-2.3% using Task-adaptive Pre-trained BERT, outperforming six baselines, and (4) proposing a simple evaluation measure by which we can recover 56-73% of mispredicted KC labels. All codes and data sets in the experiments are available at:https://github.com/tbs17/TAPT-BERT</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Descriptions ; Education ; Labels ; Machine learning</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2531863104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Jia Tracy Shen</creatorcontrib><creatorcontrib>Yamashita, Michiharu</creatorcontrib><creatorcontrib>Prihar, Ethan</creatorcontrib><creatorcontrib>Heffernan, Neil</creatorcontrib><creatorcontrib>Wu, Xintao</creatorcontrib><creatorcontrib>McGrew, Sean</creatorcontrib><creatorcontrib>Lee, Dongwon</creatorcontrib><title>Classifying Math KCs via Task-Adaptive Pre-Trained BERT</title><title>arXiv.org</title><description>Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success. In this work, we significantly improve prior research by (1) expanding the input types to include KC descriptions, instructional video titles, and problem descriptions (i.e., three types of prediction task), (2) doubling the granularity of the prediction from 198 to 385 KC labels (i.e., more practical setting but much harder multinomial classification problem), (3) improving the prediction accuracies by 0.5-2.3% using Task-adaptive Pre-trained BERT, outperforming six baselines, and (4) proposing a simple evaluation measure by which we can recover 56-73% of mispredicted KC labels. All codes and data sets in the experiments are available at:https://github.com/tbs17/TAPT-BERT</description><subject>Classification</subject><subject>Descriptions</subject><subject>Education</subject><subject>Labels</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwd85JLC7OTKvMzEtX8E0syVDwdi5WKMtMVAhJLM7WdUxJLCjJLEtVCChK1Q0pSszMS01RcHINCuFhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjU2NDCzNjQwMTY-JUAQBsTzQ7</recordid><startdate>20210524</startdate><enddate>20210524</enddate><creator>Jia Tracy Shen</creator><creator>Yamashita, Michiharu</creator><creator>Prihar, Ethan</creator><creator>Heffernan, Neil</creator><creator>Wu, Xintao</creator><creator>McGrew, Sean</creator><creator>Lee, Dongwon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210524</creationdate><title>Classifying Math KCs via Task-Adaptive Pre-Trained BERT</title><author>Jia Tracy Shen ; Yamashita, Michiharu ; Prihar, Ethan ; Heffernan, Neil ; Wu, Xintao ; McGrew, Sean ; Lee, Dongwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25318631043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Descriptions</topic><topic>Education</topic><topic>Labels</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Jia Tracy Shen</creatorcontrib><creatorcontrib>Yamashita, Michiharu</creatorcontrib><creatorcontrib>Prihar, Ethan</creatorcontrib><creatorcontrib>Heffernan, Neil</creatorcontrib><creatorcontrib>Wu, Xintao</creatorcontrib><creatorcontrib>McGrew, Sean</creatorcontrib><creatorcontrib>Lee, Dongwon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia Tracy Shen</au><au>Yamashita, Michiharu</au><au>Prihar, Ethan</au><au>Heffernan, Neil</au><au>Wu, Xintao</au><au>McGrew, Sean</au><au>Lee, Dongwon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Classifying Math KCs via Task-Adaptive Pre-Trained BERT</atitle><jtitle>arXiv.org</jtitle><date>2021-05-24</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success. In this work, we significantly improve prior research by (1) expanding the input types to include KC descriptions, instructional video titles, and problem descriptions (i.e., three types of prediction task), (2) doubling the granularity of the prediction from 198 to 385 KC labels (i.e., more practical setting but much harder multinomial classification problem), (3) improving the prediction accuracies by 0.5-2.3% using Task-adaptive Pre-trained BERT, outperforming six baselines, and (4) proposing a simple evaluation measure by which we can recover 56-73% of mispredicted KC labels. All codes and data sets in the experiments are available at:https://github.com/tbs17/TAPT-BERT</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2531863104
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Classification
Descriptions
Education
Labels
Machine learning
title Classifying Math KCs via Task-Adaptive Pre-Trained BERT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Classifying%20Math%20KCs%20via%20Task-Adaptive%20Pre-Trained%20BERT&rft.jtitle=arXiv.org&rft.au=Jia%20Tracy%20Shen&rft.date=2021-05-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2531863104%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25318631043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2531863104&rft_id=info:pmid/&rfr_iscdi=true