Loading…

Vortex dynamics for flow around the slat cove at low Reynolds numbers

Time-resolved particle image velocimetry (TR-PIV) is employed to investigate the vortex dynamics around the slat cove of a 30P30N multi-element airfoil at a fixed geometric angle of attack of 4 ° within the stowed chord Reynolds number range of 9.3 × 103 ≤ Rec ≤ 5.2 × 104. The results link the frequ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2021-05, Vol.919, Article A27
Main Authors: Wang, Jiang-Sheng, Wang, Jin-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time-resolved particle image velocimetry (TR-PIV) is employed to investigate the vortex dynamics around the slat cove of a 30P30N multi-element airfoil at a fixed geometric angle of attack of 4 ° within the stowed chord Reynolds number range of 9.3 × 103 ≤ Rec ≤ 5.2 × 104. The results link the frequency properties to the vortex shedding patterns of the slat cusp shear layer. With increasing Rec, three types of vortex dynamics are identified: (i) no vortex shedding from the slat cusp shear layer and the absence of hydrodynamic feedback in the slat cove (9.3 × 103 ≤ Rec ≤ 1.27 × 104); (ii) impingement of shed vortices on the underside of the slat trailing edge at a steady location (1.38 × 104 ≤ Rec ≤ 1.83 × 104); (iii) impingement of shed vortices on the underside of the slat trailing edge at unsteady locations (2.41 × 104 ≤ Rec ≤ 5.2 × 104). The fluctuations generated by shed vortices link the slat cusp and trailing edge by the hydrodynamic feedback in the slat cove. Besides the fundamental frequency and its harmonics, subharmonics and fractional harmonics occur to the slat cusp shear layer in the Rec range of 2.41 × 104–5.2 × 104. Subharmonics make the impingement locations of shed vortices unsteady. Fractional harmonics trigger the secondary instability of the braid region between two consecutive vortices to generate more shed vortices. The vortex dynamics in this Rec range is found to persist to Rec ~ 106.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2021.385