Loading…
Identification and electronic characterization of four cyclodehydrogenation products of H2TPP molecules on Au(111)
C–H bond activation and dehydrogenative coupling reactions have always been significant approaches to construct microscopic nanostructures on surfaces. By using scanning tunneling microscopy/spectroscopy (STM/STS) and non-contact atomic force microscopy (nc-AFM) combined with density functional theo...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2021-01, Vol.23 (20), p.11784-11788 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | C–H bond activation and dehydrogenative coupling reactions have always been significant approaches to construct microscopic nanostructures on surfaces. By using scanning tunneling microscopy/spectroscopy (STM/STS) and non-contact atomic force microscopy (nc-AFM) combined with density functional theory (DFT), we systematically characterized the atomically precise topographies and electronic properties of H2TPP cyclodehydrogenation products on Au(111). Through surface-assisted thermal excitation, four types of cyclodehydrogenation products were obtained and clearly resolved in the nc-AFM images. The electronic characterization depicts the predominant resonances and their spatial distributions of the four products. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d1cp01040a |