Loading…

Optimizing Requirements for a Compact Spaceborne Adaptive Spectral Imaging System in Subpixel Target Detection Applications

We developed a process to provide design recommendations for compact spaceborne spectral imaging systems with adaptive band selection capabilities. Our focus application was subpixel target detection, and we analyzed a set of mission scenarios to find relationships in detection performance between s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on miniaturization for air and space systems 2020-06, Vol.1 (1), p.32-46
Main Authors: Han, Sanghui, Kerekes, John, Higbee, Shawn, Siegel, Lawrence
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2443-c45efe0105b609af35537defdfcbfbc60ba6c7d3849731cc93c1a83e694026d13
cites cdi_FETCH-LOGICAL-c2443-c45efe0105b609af35537defdfcbfbc60ba6c7d3849731cc93c1a83e694026d13
container_end_page 46
container_issue 1
container_start_page 32
container_title IEEE journal on miniaturization for air and space systems
container_volume 1
creator Han, Sanghui
Kerekes, John
Higbee, Shawn
Siegel, Lawrence
description We developed a process to provide design recommendations for compact spaceborne spectral imaging systems with adaptive band selection capabilities. Our focus application was subpixel target detection, and we analyzed a set of mission scenarios to find relationships in detection performance between selected parameters of interest. We used an analytic model to predict performance and generate trade curves, then simulated a scene to analyze potential operational effects on performance for the selected target and background combinations. Using these models, we predicted and assessed each scenario to provide recommendations for mission feasibility and system design. The parameters we selected for analysis were target fill fraction, noise, number of bands, and scene complexity to find critical points in the trade space and reach a set of recommendations. We examined the operational effects by simulating a realistic scenario and ensuring key real-world phenomena were captured within the spectral images. Our results produced recommendations for each mission and provided a proof of concept for a process to analyze designs of miniature spaceborne imaging systems.
doi_str_mv 10.1109/JMASS.2020.2994273
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2532106713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9091577</ieee_id><sourcerecordid>2532106713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2443-c45efe0105b609af35537defdfcbfbc60ba6c7d3849731cc93c1a83e694026d13</originalsourceid><addsrcrecordid>eNpNkV1LwzAUhosoKOof0Jug15v5aJPmcsyviSLYeR3S9HRG1qYmmTj982ZOxJuTQ3iewwtvlp0QPCYEy4u7h0lVjSmmeEylzKlgO9kBLQQfMcLz3X_7fnYcwivGCc1LUdKD7OtxiLazn7ZfoCd4W1kPHfQxoNZ5pNHUdYM2EVVpQu18D2jS6KS8Q_oDE71eolmnFxu_WocIHbI9qlb1YD9giebaLyCiS4iJta5Hk2FYWqM3ezjK9lq9DHD8-x5mz9dX8-nt6P7xZjad3I8MzXM2MnkBLWCCi5pjqVtWFEw00DatqdvacFxrbkTDylwKRoyRzBBdMuAyx5Q3hB1mZ9u7LkSrgrEpzItxfZ8yKVIyzliZoPMtNHj3toIQ1atb-T7lUrRglGAuCEsU3VLGuxA8tGrwttN-rQhWmzLUTxlqU4b6LSNJp1vJAsCfILEkhRDsG0qnhw0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532106713</pqid></control><display><type>article</type><title>Optimizing Requirements for a Compact Spaceborne Adaptive Spectral Imaging System in Subpixel Target Detection Applications</title><source>IEEE Xplore (Online service)</source><creator>Han, Sanghui ; Kerekes, John ; Higbee, Shawn ; Siegel, Lawrence</creator><creatorcontrib>Han, Sanghui ; Kerekes, John ; Higbee, Shawn ; Siegel, Lawrence</creatorcontrib><description>We developed a process to provide design recommendations for compact spaceborne spectral imaging systems with adaptive band selection capabilities. Our focus application was subpixel target detection, and we analyzed a set of mission scenarios to find relationships in detection performance between selected parameters of interest. We used an analytic model to predict performance and generate trade curves, then simulated a scene to analyze potential operational effects on performance for the selected target and background combinations. Using these models, we predicted and assessed each scenario to provide recommendations for mission feasibility and system design. The parameters we selected for analysis were target fill fraction, noise, number of bands, and scene complexity to find critical points in the trade space and reach a set of recommendations. We examined the operational effects by simulating a realistic scenario and ensuring key real-world phenomena were captured within the spectral images. Our results produced recommendations for each mission and provided a proof of concept for a process to analyze designs of miniature spaceborne imaging systems.</description><identifier>ISSN: 2576-3164</identifier><identifier>EISSN: 2576-3164</identifier><identifier>DOI: 10.1109/JMASS.2020.2994273</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive systems ; Analytical models ; Band selection ; Critical point ; Design parameters ; hyperspectral imagery ; Imaging ; imaging system design ; Mathematical model ; Mathematical models ; modeling ; Object detection ; optimization ; Pixels ; Predictive models ; remote sensing ; Satellites ; simulation ; Spectra ; Systems design ; Target detection</subject><ispartof>IEEE journal on miniaturization for air and space systems, 2020-06, Vol.1 (1), p.32-46</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2443-c45efe0105b609af35537defdfcbfbc60ba6c7d3849731cc93c1a83e694026d13</citedby><cites>FETCH-LOGICAL-c2443-c45efe0105b609af35537defdfcbfbc60ba6c7d3849731cc93c1a83e694026d13</cites><orcidid>0000-0002-0754-8170 ; 0000-0001-8910-8146 ; 0000000189108146 ; 0000000207548170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9091577$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1836338$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Sanghui</creatorcontrib><creatorcontrib>Kerekes, John</creatorcontrib><creatorcontrib>Higbee, Shawn</creatorcontrib><creatorcontrib>Siegel, Lawrence</creatorcontrib><title>Optimizing Requirements for a Compact Spaceborne Adaptive Spectral Imaging System in Subpixel Target Detection Applications</title><title>IEEE journal on miniaturization for air and space systems</title><addtitle>JMASS</addtitle><description>We developed a process to provide design recommendations for compact spaceborne spectral imaging systems with adaptive band selection capabilities. Our focus application was subpixel target detection, and we analyzed a set of mission scenarios to find relationships in detection performance between selected parameters of interest. We used an analytic model to predict performance and generate trade curves, then simulated a scene to analyze potential operational effects on performance for the selected target and background combinations. Using these models, we predicted and assessed each scenario to provide recommendations for mission feasibility and system design. The parameters we selected for analysis were target fill fraction, noise, number of bands, and scene complexity to find critical points in the trade space and reach a set of recommendations. We examined the operational effects by simulating a realistic scenario and ensuring key real-world phenomena were captured within the spectral images. Our results produced recommendations for each mission and provided a proof of concept for a process to analyze designs of miniature spaceborne imaging systems.</description><subject>Adaptive systems</subject><subject>Analytical models</subject><subject>Band selection</subject><subject>Critical point</subject><subject>Design parameters</subject><subject>hyperspectral imagery</subject><subject>Imaging</subject><subject>imaging system design</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Object detection</subject><subject>optimization</subject><subject>Pixels</subject><subject>Predictive models</subject><subject>remote sensing</subject><subject>Satellites</subject><subject>simulation</subject><subject>Spectra</subject><subject>Systems design</subject><subject>Target detection</subject><issn>2576-3164</issn><issn>2576-3164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkV1LwzAUhosoKOof0Jug15v5aJPmcsyviSLYeR3S9HRG1qYmmTj982ZOxJuTQ3iewwtvlp0QPCYEy4u7h0lVjSmmeEylzKlgO9kBLQQfMcLz3X_7fnYcwivGCc1LUdKD7OtxiLazn7ZfoCd4W1kPHfQxoNZ5pNHUdYM2EVVpQu18D2jS6KS8Q_oDE71eolmnFxu_WocIHbI9qlb1YD9giebaLyCiS4iJta5Hk2FYWqM3ezjK9lq9DHD8-x5mz9dX8-nt6P7xZjad3I8MzXM2MnkBLWCCi5pjqVtWFEw00DatqdvacFxrbkTDylwKRoyRzBBdMuAyx5Q3hB1mZ9u7LkSrgrEpzItxfZ8yKVIyzliZoPMtNHj3toIQ1atb-T7lUrRglGAuCEsU3VLGuxA8tGrwttN-rQhWmzLUTxlqU4b6LSNJp1vJAsCfILEkhRDsG0qnhw0</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Han, Sanghui</creator><creator>Kerekes, John</creator><creator>Higbee, Shawn</creator><creator>Siegel, Lawrence</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0754-8170</orcidid><orcidid>https://orcid.org/0000-0001-8910-8146</orcidid><orcidid>https://orcid.org/0000000189108146</orcidid><orcidid>https://orcid.org/0000000207548170</orcidid></search><sort><creationdate>20200601</creationdate><title>Optimizing Requirements for a Compact Spaceborne Adaptive Spectral Imaging System in Subpixel Target Detection Applications</title><author>Han, Sanghui ; Kerekes, John ; Higbee, Shawn ; Siegel, Lawrence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2443-c45efe0105b609af35537defdfcbfbc60ba6c7d3849731cc93c1a83e694026d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive systems</topic><topic>Analytical models</topic><topic>Band selection</topic><topic>Critical point</topic><topic>Design parameters</topic><topic>hyperspectral imagery</topic><topic>Imaging</topic><topic>imaging system design</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Object detection</topic><topic>optimization</topic><topic>Pixels</topic><topic>Predictive models</topic><topic>remote sensing</topic><topic>Satellites</topic><topic>simulation</topic><topic>Spectra</topic><topic>Systems design</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Sanghui</creatorcontrib><creatorcontrib>Kerekes, John</creatorcontrib><creatorcontrib>Higbee, Shawn</creatorcontrib><creatorcontrib>Siegel, Lawrence</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal on miniaturization for air and space systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Sanghui</au><au>Kerekes, John</au><au>Higbee, Shawn</au><au>Siegel, Lawrence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Requirements for a Compact Spaceborne Adaptive Spectral Imaging System in Subpixel Target Detection Applications</atitle><jtitle>IEEE journal on miniaturization for air and space systems</jtitle><stitle>JMASS</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>1</volume><issue>1</issue><spage>32</spage><epage>46</epage><pages>32-46</pages><issn>2576-3164</issn><eissn>2576-3164</eissn><abstract>We developed a process to provide design recommendations for compact spaceborne spectral imaging systems with adaptive band selection capabilities. Our focus application was subpixel target detection, and we analyzed a set of mission scenarios to find relationships in detection performance between selected parameters of interest. We used an analytic model to predict performance and generate trade curves, then simulated a scene to analyze potential operational effects on performance for the selected target and background combinations. Using these models, we predicted and assessed each scenario to provide recommendations for mission feasibility and system design. The parameters we selected for analysis were target fill fraction, noise, number of bands, and scene complexity to find critical points in the trade space and reach a set of recommendations. We examined the operational effects by simulating a realistic scenario and ensuring key real-world phenomena were captured within the spectral images. Our results produced recommendations for each mission and provided a proof of concept for a process to analyze designs of miniature spaceborne imaging systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMASS.2020.2994273</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0754-8170</orcidid><orcidid>https://orcid.org/0000-0001-8910-8146</orcidid><orcidid>https://orcid.org/0000000189108146</orcidid><orcidid>https://orcid.org/0000000207548170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2576-3164
ispartof IEEE journal on miniaturization for air and space systems, 2020-06, Vol.1 (1), p.32-46
issn 2576-3164
2576-3164
language eng
recordid cdi_proquest_journals_2532106713
source IEEE Xplore (Online service)
subjects Adaptive systems
Analytical models
Band selection
Critical point
Design parameters
hyperspectral imagery
Imaging
imaging system design
Mathematical model
Mathematical models
modeling
Object detection
optimization
Pixels
Predictive models
remote sensing
Satellites
simulation
Spectra
Systems design
Target detection
title Optimizing Requirements for a Compact Spaceborne Adaptive Spectral Imaging System in Subpixel Target Detection Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Requirements%20for%20a%20Compact%20Spaceborne%20Adaptive%20Spectral%20Imaging%20System%20in%20Subpixel%20Target%20Detection%20Applications&rft.jtitle=IEEE%20journal%20on%20miniaturization%20for%20air%20and%20space%20systems&rft.au=Han,%20Sanghui&rft.date=2020-06-01&rft.volume=1&rft.issue=1&rft.spage=32&rft.epage=46&rft.pages=32-46&rft.issn=2576-3164&rft.eissn=2576-3164&rft_id=info:doi/10.1109/JMASS.2020.2994273&rft_dat=%3Cproquest_cross%3E2532106713%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2443-c45efe0105b609af35537defdfcbfbc60ba6c7d3849731cc93c1a83e694026d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532106713&rft_id=info:pmid/&rft_ieee_id=9091577&rfr_iscdi=true