Loading…

A Snevily-type inequality for multisets

Alon [1] proved that if p is an odd prime, 1 ≤ n < p and a 1 , … , a n are distinct elements in Z p and b 1 , … , b n are arbitrary elements in Z p then there exists a permutation of σ of the indices 1 , … , n such that the elements a 1 + b σ ( 1 ) , … , a n + b σ ( n ) are distinct. In this pape...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Hungarica 2021-06, Vol.164 (1), p.46-50
Main Authors: Gáspár, A., Kós, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-ff737ca96f1ea8d236c581abfa07a295afdcc7af1d8fa15acec339d0e1b4125f3
container_end_page 50
container_issue 1
container_start_page 46
container_title Acta mathematica Hungarica
container_volume 164
creator Gáspár, A.
Kós, G.
description Alon [1] proved that if p is an odd prime, 1 ≤ n < p and a 1 , … , a n are distinct elements in Z p and b 1 , … , b n are arbitrary elements in Z p then there exists a permutation of σ of the indices 1 , … , n such that the elements a 1 + b σ ( 1 ) , … , a n + b σ ( n ) are distinct. In this paper we present a multiset variant of this result.
doi_str_mv 10.1007/s10474-020-01123-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2532138245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532138245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ff737ca96f1ea8d236c581abfa07a295afdcc7af1d8fa15acec339d0e1b4125f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcFF66i7700TbscBr9gwIW6Dpk0kQ6dtpO0Qv-9HSu4c3U3594Lh7FrhDsEUPcRIVUpBwIOiCS4PGELlHnOKRN0yhZAIuOSivScXcS4AwApIF2w21Xy1rivqh55P3YuqRp3GExd9WPi25Dsh7qvouvjJTvzpo7u6jeX7OPx4X39zDevTy_r1YZbUtBz75VQ1hSZR2fycjq1Mkez9QaUoUIaX1qrjMcy9walsc4KUZTgcJsiSS-W7Gbe7UJ7GFzs9a4dQjNdapKCUOSUyomimbKhjTE4r7tQ7U0YNYI-CtGzED0J0T9C9LEk5lKc4ObThb_pf1rfsnVjDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532138245</pqid></control><display><type>article</type><title>A Snevily-type inequality for multisets</title><source>Springer Nature</source><creator>Gáspár, A. ; Kós, G.</creator><creatorcontrib>Gáspár, A. ; Kós, G.</creatorcontrib><description>Alon [1] proved that if p is an odd prime, 1 ≤ n &lt; p and a 1 , … , a n are distinct elements in Z p and b 1 , … , b n are arbitrary elements in Z p then there exists a permutation of σ of the indices 1 , … , n such that the elements a 1 + b σ ( 1 ) , … , a n + b σ ( n ) are distinct. In this paper we present a multiset variant of this result.</description><identifier>ISSN: 0236-5294</identifier><identifier>EISSN: 1588-2632</identifier><identifier>DOI: 10.1007/s10474-020-01123-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Permutations</subject><ispartof>Acta mathematica Hungarica, 2021-06, Vol.164 (1), p.46-50</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2021</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ff737ca96f1ea8d236c581abfa07a295afdcc7af1d8fa15acec339d0e1b4125f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gáspár, A.</creatorcontrib><creatorcontrib>Kós, G.</creatorcontrib><title>A Snevily-type inequality for multisets</title><title>Acta mathematica Hungarica</title><addtitle>Acta Math. Hungar</addtitle><description>Alon [1] proved that if p is an odd prime, 1 ≤ n &lt; p and a 1 , … , a n are distinct elements in Z p and b 1 , … , b n are arbitrary elements in Z p then there exists a permutation of σ of the indices 1 , … , n such that the elements a 1 + b σ ( 1 ) , … , a n + b σ ( n ) are distinct. In this paper we present a multiset variant of this result.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Permutations</subject><issn>0236-5294</issn><issn>1588-2632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcFF66i7700TbscBr9gwIW6Dpk0kQ6dtpO0Qv-9HSu4c3U3594Lh7FrhDsEUPcRIVUpBwIOiCS4PGELlHnOKRN0yhZAIuOSivScXcS4AwApIF2w21Xy1rivqh55P3YuqRp3GExd9WPi25Dsh7qvouvjJTvzpo7u6jeX7OPx4X39zDevTy_r1YZbUtBz75VQ1hSZR2fycjq1Mkez9QaUoUIaX1qrjMcy9walsc4KUZTgcJsiSS-W7Gbe7UJ7GFzs9a4dQjNdapKCUOSUyomimbKhjTE4r7tQ7U0YNYI-CtGzED0J0T9C9LEk5lKc4ObThb_pf1rfsnVjDg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Gáspár, A.</creator><creator>Kós, G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>A Snevily-type inequality for multisets</title><author>Gáspár, A. ; Kós, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ff737ca96f1ea8d236c581abfa07a295afdcc7af1d8fa15acec339d0e1b4125f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Permutations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gáspár, A.</creatorcontrib><creatorcontrib>Kós, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gáspár, A.</au><au>Kós, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Snevily-type inequality for multisets</atitle><jtitle>Acta mathematica Hungarica</jtitle><stitle>Acta Math. Hungar</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>164</volume><issue>1</issue><spage>46</spage><epage>50</epage><pages>46-50</pages><issn>0236-5294</issn><eissn>1588-2632</eissn><abstract>Alon [1] proved that if p is an odd prime, 1 ≤ n &lt; p and a 1 , … , a n are distinct elements in Z p and b 1 , … , b n are arbitrary elements in Z p then there exists a permutation of σ of the indices 1 , … , n such that the elements a 1 + b σ ( 1 ) , … , a n + b σ ( n ) are distinct. In this paper we present a multiset variant of this result.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10474-020-01123-5</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0236-5294
ispartof Acta mathematica Hungarica, 2021-06, Vol.164 (1), p.46-50
issn 0236-5294
1588-2632
language eng
recordid cdi_proquest_journals_2532138245
source Springer Nature
subjects Mathematics
Mathematics and Statistics
Permutations
title A Snevily-type inequality for multisets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Snevily-type%20inequality%20for%20multisets&rft.jtitle=Acta%20mathematica%20Hungarica&rft.au=G%C3%A1sp%C3%A1r,%20A.&rft.date=2021-06-01&rft.volume=164&rft.issue=1&rft.spage=46&rft.epage=50&rft.pages=46-50&rft.issn=0236-5294&rft.eissn=1588-2632&rft_id=info:doi/10.1007/s10474-020-01123-5&rft_dat=%3Cproquest_cross%3E2532138245%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-ff737ca96f1ea8d236c581abfa07a295afdcc7af1d8fa15acec339d0e1b4125f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532138245&rft_id=info:pmid/&rfr_iscdi=true