Loading…

UAVs Path Planning under a Bi-Objective Optimization Framework for Smart Cities

Unmanned aerial vehicles (UAVs) have been used extensively for search and rescue operations, surveillance, disaster monitoring, attacking terrorists, etc. due to their growing advantages of low-cost, high maneuverability, and easy deployability. This study proposes a mixed-integer programming model...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2021-05, Vol.10 (10), p.1193
Main Authors: Saha, Subrata, Vasegaard, Alex Elkjær, Nielsen, Izabela, Hapka, Aneta, Budzisz, Henryk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Unmanned aerial vehicles (UAVs) have been used extensively for search and rescue operations, surveillance, disaster monitoring, attacking terrorists, etc. due to their growing advantages of low-cost, high maneuverability, and easy deployability. This study proposes a mixed-integer programming model under a multi-objective optimization framework to design trajectories that enable a set of UAVs to execute surveillance tasks. The first objective maximizes the cumulative probability of target detection to aim for mission planning success. The second objective ensures minimization of cumulative path length to provide a higher resource utilization goal. A two-step variable neighborhood search (VNS) algorithm is offered, which addresses the combinatorial optimization issue for determining the near-optimal sequence for cell visiting to reach the target. Numerical experiments and simulation results are evaluated in numerous benchmark instances. Results demonstrate that the proposed approach can favorably support practical deployability purposes.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10101193