Loading…

Coherent and dissipative cavity magnonics

Strong interactions between magnetic materials and electrodynamic cavities mix together spin and photon properties, producing unique hybridized behavior. The study of such coupled spin-photon systems, known as cavity magnonics, is motivated by the flexibility and controllability of these hybridized...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2021-05, Vol.129 (20)
Main Authors: Harder, M., Yao, B. M., Gui, Y. S., Hu, C.-M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Strong interactions between magnetic materials and electrodynamic cavities mix together spin and photon properties, producing unique hybridized behavior. The study of such coupled spin-photon systems, known as cavity magnonics, is motivated by the flexibility and controllability of these hybridized states for spintronic and quantum information technologies. In this Tutorial, we examine and compare both coherent and dissipative interactions in cavity magnonics. We begin with a familiar case study, the coupled harmonic oscillator, which provides insight into the unique characteristics of coherent and dissipative coupling. We then examine several canonical cavity-magnonic systems, highlighting the requirements for different coupling mechanisms, and conclude with recent applications of spin-photon hybridization, for example, the development of quantum transducers, memory architectures, isolators, and enhanced sensing.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0046202