Loading…
Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case
Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs a...
Saved in:
Published in: | Sustainability 2019-12, Vol.11 (23), p.6539 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33 |
container_end_page | |
container_issue | 23 |
container_start_page | 6539 |
container_title | Sustainability |
container_volume | 11 |
creator | Barzola-Monteses, Julio Mite-León, Mónica Espinoza-Andaluz, Mayken Gómez-Romero, Juan Fajardo, Waldo |
description | Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis. Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate planning strategies and a good starting point for energy policy decisions. In this paper, we developed a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX (1,1,1) (1,0,0)12, which considers an exogenous variable precipitation in the Napo River basin and can accurately predict monthly production values up to a year in advance. This model can provide valuable insights to Ecuadorian energy managers and policymakers. |
doi_str_mv | 10.3390/su11236539 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533334835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533334835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33</originalsourceid><addsrcrecordid>eNpNUNFKAzEQDKJgqX3xCwK-CafJbZI2vpVSW6FgwfP5yCV7mtI2NblD-vemVNB5mR1mdmGHkFvOHgA0e0w95yUoCfqCDEo25gVnkl3-m6_JKKUNywDgmqsBqSq_Q_qG0WOi073ZHpNPtA2RriM6bzu__6DLo4sBt2i76C1dh2882cH12Q77J1p9Ip3b3ri8NjMJb8hVa7YJR788JO_P82q2LFavi5fZdFVYANUVLTSoJ9Iy0aIDZQ3LkhmHQrum1A0TpRJaCSasaUCNpYVSt8BBNrKxDcCQ3J3vHmL46jF19Sb0MT-R6lJChpiAzKn7c8rGkFLEtj5EvzPxWHNWn4qr_4qDHy_LX4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533334835</pqid></control><display><type>article</type><title>Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case</title><source>Publicly Available Content Database</source><creator>Barzola-Monteses, Julio ; Mite-León, Mónica ; Espinoza-Andaluz, Mayken ; Gómez-Romero, Juan ; Fajardo, Waldo</creator><creatorcontrib>Barzola-Monteses, Julio ; Mite-León, Mónica ; Espinoza-Andaluz, Mayken ; Gómez-Romero, Juan ; Fajardo, Waldo</creatorcontrib><description>Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis. Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate planning strategies and a good starting point for energy policy decisions. In this paper, we developed a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX (1,1,1) (1,0,0)12, which considers an exogenous variable precipitation in the Napo River basin and can accurately predict monthly production values up to a year in advance. This model can provide valuable insights to Ecuadorian energy managers and policymakers.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su11236539</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy ; Autoregressive models ; Drought ; Electric power generation ; Electrical faults ; Electricity ; Electricity distribution ; Energy industry ; Energy policy ; Fossil fuels ; Hydroelectric power ; Hydrologic data ; Methods ; Power sources ; Precipitation ; Prediction models ; Rain ; Random variables ; Renewable resources ; River basins ; Statistical analysis ; Sustainability ; Time series</subject><ispartof>Sustainability, 2019-12, Vol.11 (23), p.6539</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33</citedby><cites>FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33</cites><orcidid>0000-0001-8782-3066 ; 0000-0003-0439-3692 ; 0000-0003-2732-979X ; 0000-0001-7809-8659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2533334835/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2533334835?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Barzola-Monteses, Julio</creatorcontrib><creatorcontrib>Mite-León, Mónica</creatorcontrib><creatorcontrib>Espinoza-Andaluz, Mayken</creatorcontrib><creatorcontrib>Gómez-Romero, Juan</creatorcontrib><creatorcontrib>Fajardo, Waldo</creatorcontrib><title>Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case</title><title>Sustainability</title><description>Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis. Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate planning strategies and a good starting point for energy policy decisions. In this paper, we developed a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX (1,1,1) (1,0,0)12, which considers an exogenous variable precipitation in the Napo River basin and can accurately predict monthly production values up to a year in advance. This model can provide valuable insights to Ecuadorian energy managers and policymakers.</description><subject>Alternative energy</subject><subject>Autoregressive models</subject><subject>Drought</subject><subject>Electric power generation</subject><subject>Electrical faults</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy industry</subject><subject>Energy policy</subject><subject>Fossil fuels</subject><subject>Hydroelectric power</subject><subject>Hydrologic data</subject><subject>Methods</subject><subject>Power sources</subject><subject>Precipitation</subject><subject>Prediction models</subject><subject>Rain</subject><subject>Random variables</subject><subject>Renewable resources</subject><subject>River basins</subject><subject>Statistical analysis</subject><subject>Sustainability</subject><subject>Time series</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUNFKAzEQDKJgqX3xCwK-CafJbZI2vpVSW6FgwfP5yCV7mtI2NblD-vemVNB5mR1mdmGHkFvOHgA0e0w95yUoCfqCDEo25gVnkl3-m6_JKKUNywDgmqsBqSq_Q_qG0WOi073ZHpNPtA2RriM6bzu__6DLo4sBt2i76C1dh2882cH12Q77J1p9Ip3b3ri8NjMJb8hVa7YJR788JO_P82q2LFavi5fZdFVYANUVLTSoJ9Iy0aIDZQ3LkhmHQrum1A0TpRJaCSasaUCNpYVSt8BBNrKxDcCQ3J3vHmL46jF19Sb0MT-R6lJChpiAzKn7c8rGkFLEtj5EvzPxWHNWn4qr_4qDHy_LX4I</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Barzola-Monteses, Julio</creator><creator>Mite-León, Mónica</creator><creator>Espinoza-Andaluz, Mayken</creator><creator>Gómez-Romero, Juan</creator><creator>Fajardo, Waldo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8782-3066</orcidid><orcidid>https://orcid.org/0000-0003-0439-3692</orcidid><orcidid>https://orcid.org/0000-0003-2732-979X</orcidid><orcidid>https://orcid.org/0000-0001-7809-8659</orcidid></search><sort><creationdate>20191201</creationdate><title>Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case</title><author>Barzola-Monteses, Julio ; Mite-León, Mónica ; Espinoza-Andaluz, Mayken ; Gómez-Romero, Juan ; Fajardo, Waldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy</topic><topic>Autoregressive models</topic><topic>Drought</topic><topic>Electric power generation</topic><topic>Electrical faults</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy industry</topic><topic>Energy policy</topic><topic>Fossil fuels</topic><topic>Hydroelectric power</topic><topic>Hydrologic data</topic><topic>Methods</topic><topic>Power sources</topic><topic>Precipitation</topic><topic>Prediction models</topic><topic>Rain</topic><topic>Random variables</topic><topic>Renewable resources</topic><topic>River basins</topic><topic>Statistical analysis</topic><topic>Sustainability</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barzola-Monteses, Julio</creatorcontrib><creatorcontrib>Mite-León, Mónica</creatorcontrib><creatorcontrib>Espinoza-Andaluz, Mayken</creatorcontrib><creatorcontrib>Gómez-Romero, Juan</creatorcontrib><creatorcontrib>Fajardo, Waldo</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barzola-Monteses, Julio</au><au>Mite-León, Mónica</au><au>Espinoza-Andaluz, Mayken</au><au>Gómez-Romero, Juan</au><au>Fajardo, Waldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case</atitle><jtitle>Sustainability</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>11</volume><issue>23</issue><spage>6539</spage><pages>6539-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis. Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate planning strategies and a good starting point for energy policy decisions. In this paper, we developed a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX (1,1,1) (1,0,0)12, which considers an exogenous variable precipitation in the Napo River basin and can accurately predict monthly production values up to a year in advance. This model can provide valuable insights to Ecuadorian energy managers and policymakers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su11236539</doi><orcidid>https://orcid.org/0000-0001-8782-3066</orcidid><orcidid>https://orcid.org/0000-0003-0439-3692</orcidid><orcidid>https://orcid.org/0000-0003-2732-979X</orcidid><orcidid>https://orcid.org/0000-0001-7809-8659</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2019-12, Vol.11 (23), p.6539 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2533334835 |
source | Publicly Available Content Database |
subjects | Alternative energy Autoregressive models Drought Electric power generation Electrical faults Electricity Electricity distribution Energy industry Energy policy Fossil fuels Hydroelectric power Hydrologic data Methods Power sources Precipitation Prediction models Rain Random variables Renewable resources River basins Statistical analysis Sustainability Time series |
title | Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Series%20Analysis%20for%20Predicting%20Hydroelectric%20Power%20Production:%20The%20Ecuador%20Case&rft.jtitle=Sustainability&rft.au=Barzola-Monteses,%20Julio&rft.date=2019-12-01&rft.volume=11&rft.issue=23&rft.spage=6539&rft.pages=6539-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su11236539&rft_dat=%3Cproquest_cross%3E2533334835%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533334835&rft_id=info:pmid/&rfr_iscdi=true |