Loading…

Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case

Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs a...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2019-12, Vol.11 (23), p.6539
Main Authors: Barzola-Monteses, Julio, Mite-León, Mónica, Espinoza-Andaluz, Mayken, Gómez-Romero, Juan, Fajardo, Waldo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33
cites cdi_FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33
container_end_page
container_issue 23
container_start_page 6539
container_title Sustainability
container_volume 11
creator Barzola-Monteses, Julio
Mite-León, Mónica
Espinoza-Andaluz, Mayken
Gómez-Romero, Juan
Fajardo, Waldo
description Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis. Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate planning strategies and a good starting point for energy policy decisions. In this paper, we developed a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX (1,1,1) (1,0,0)12, which considers an exogenous variable precipitation in the Napo River basin and can accurately predict monthly production values up to a year in advance. This model can provide valuable insights to Ecuadorian energy managers and policymakers.
doi_str_mv 10.3390/su11236539
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533334835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533334835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33</originalsourceid><addsrcrecordid>eNpNUNFKAzEQDKJgqX3xCwK-CafJbZI2vpVSW6FgwfP5yCV7mtI2NblD-vemVNB5mR1mdmGHkFvOHgA0e0w95yUoCfqCDEo25gVnkl3-m6_JKKUNywDgmqsBqSq_Q_qG0WOi073ZHpNPtA2RriM6bzu__6DLo4sBt2i76C1dh2882cH12Q77J1p9Ip3b3ri8NjMJb8hVa7YJR788JO_P82q2LFavi5fZdFVYANUVLTSoJ9Iy0aIDZQ3LkhmHQrum1A0TpRJaCSasaUCNpYVSt8BBNrKxDcCQ3J3vHmL46jF19Sb0MT-R6lJChpiAzKn7c8rGkFLEtj5EvzPxWHNWn4qr_4qDHy_LX4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533334835</pqid></control><display><type>article</type><title>Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case</title><source>Publicly Available Content Database</source><creator>Barzola-Monteses, Julio ; Mite-León, Mónica ; Espinoza-Andaluz, Mayken ; Gómez-Romero, Juan ; Fajardo, Waldo</creator><creatorcontrib>Barzola-Monteses, Julio ; Mite-León, Mónica ; Espinoza-Andaluz, Mayken ; Gómez-Romero, Juan ; Fajardo, Waldo</creatorcontrib><description>Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis. Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate planning strategies and a good starting point for energy policy decisions. In this paper, we developed a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX (1,1,1) (1,0,0)12, which considers an exogenous variable precipitation in the Napo River basin and can accurately predict monthly production values up to a year in advance. This model can provide valuable insights to Ecuadorian energy managers and policymakers.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su11236539</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy ; Autoregressive models ; Drought ; Electric power generation ; Electrical faults ; Electricity ; Electricity distribution ; Energy industry ; Energy policy ; Fossil fuels ; Hydroelectric power ; Hydrologic data ; Methods ; Power sources ; Precipitation ; Prediction models ; Rain ; Random variables ; Renewable resources ; River basins ; Statistical analysis ; Sustainability ; Time series</subject><ispartof>Sustainability, 2019-12, Vol.11 (23), p.6539</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33</citedby><cites>FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33</cites><orcidid>0000-0001-8782-3066 ; 0000-0003-0439-3692 ; 0000-0003-2732-979X ; 0000-0001-7809-8659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2533334835/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2533334835?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Barzola-Monteses, Julio</creatorcontrib><creatorcontrib>Mite-León, Mónica</creatorcontrib><creatorcontrib>Espinoza-Andaluz, Mayken</creatorcontrib><creatorcontrib>Gómez-Romero, Juan</creatorcontrib><creatorcontrib>Fajardo, Waldo</creatorcontrib><title>Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case</title><title>Sustainability</title><description>Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis. Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate planning strategies and a good starting point for energy policy decisions. In this paper, we developed a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX (1,1,1) (1,0,0)12, which considers an exogenous variable precipitation in the Napo River basin and can accurately predict monthly production values up to a year in advance. This model can provide valuable insights to Ecuadorian energy managers and policymakers.</description><subject>Alternative energy</subject><subject>Autoregressive models</subject><subject>Drought</subject><subject>Electric power generation</subject><subject>Electrical faults</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy industry</subject><subject>Energy policy</subject><subject>Fossil fuels</subject><subject>Hydroelectric power</subject><subject>Hydrologic data</subject><subject>Methods</subject><subject>Power sources</subject><subject>Precipitation</subject><subject>Prediction models</subject><subject>Rain</subject><subject>Random variables</subject><subject>Renewable resources</subject><subject>River basins</subject><subject>Statistical analysis</subject><subject>Sustainability</subject><subject>Time series</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUNFKAzEQDKJgqX3xCwK-CafJbZI2vpVSW6FgwfP5yCV7mtI2NblD-vemVNB5mR1mdmGHkFvOHgA0e0w95yUoCfqCDEo25gVnkl3-m6_JKKUNywDgmqsBqSq_Q_qG0WOi073ZHpNPtA2RriM6bzu__6DLo4sBt2i76C1dh2882cH12Q77J1p9Ip3b3ri8NjMJb8hVa7YJR788JO_P82q2LFavi5fZdFVYANUVLTSoJ9Iy0aIDZQ3LkhmHQrum1A0TpRJaCSasaUCNpYVSt8BBNrKxDcCQ3J3vHmL46jF19Sb0MT-R6lJChpiAzKn7c8rGkFLEtj5EvzPxWHNWn4qr_4qDHy_LX4I</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Barzola-Monteses, Julio</creator><creator>Mite-León, Mónica</creator><creator>Espinoza-Andaluz, Mayken</creator><creator>Gómez-Romero, Juan</creator><creator>Fajardo, Waldo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8782-3066</orcidid><orcidid>https://orcid.org/0000-0003-0439-3692</orcidid><orcidid>https://orcid.org/0000-0003-2732-979X</orcidid><orcidid>https://orcid.org/0000-0001-7809-8659</orcidid></search><sort><creationdate>20191201</creationdate><title>Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case</title><author>Barzola-Monteses, Julio ; Mite-León, Mónica ; Espinoza-Andaluz, Mayken ; Gómez-Romero, Juan ; Fajardo, Waldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy</topic><topic>Autoregressive models</topic><topic>Drought</topic><topic>Electric power generation</topic><topic>Electrical faults</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy industry</topic><topic>Energy policy</topic><topic>Fossil fuels</topic><topic>Hydroelectric power</topic><topic>Hydrologic data</topic><topic>Methods</topic><topic>Power sources</topic><topic>Precipitation</topic><topic>Prediction models</topic><topic>Rain</topic><topic>Random variables</topic><topic>Renewable resources</topic><topic>River basins</topic><topic>Statistical analysis</topic><topic>Sustainability</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barzola-Monteses, Julio</creatorcontrib><creatorcontrib>Mite-León, Mónica</creatorcontrib><creatorcontrib>Espinoza-Andaluz, Mayken</creatorcontrib><creatorcontrib>Gómez-Romero, Juan</creatorcontrib><creatorcontrib>Fajardo, Waldo</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barzola-Monteses, Julio</au><au>Mite-León, Mónica</au><au>Espinoza-Andaluz, Mayken</au><au>Gómez-Romero, Juan</au><au>Fajardo, Waldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case</atitle><jtitle>Sustainability</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>11</volume><issue>23</issue><spage>6539</spage><pages>6539-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis. Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate planning strategies and a good starting point for energy policy decisions. In this paper, we developed a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX (1,1,1) (1,0,0)12, which considers an exogenous variable precipitation in the Napo River basin and can accurately predict monthly production values up to a year in advance. This model can provide valuable insights to Ecuadorian energy managers and policymakers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su11236539</doi><orcidid>https://orcid.org/0000-0001-8782-3066</orcidid><orcidid>https://orcid.org/0000-0003-0439-3692</orcidid><orcidid>https://orcid.org/0000-0003-2732-979X</orcidid><orcidid>https://orcid.org/0000-0001-7809-8659</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2019-12, Vol.11 (23), p.6539
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2533334835
source Publicly Available Content Database
subjects Alternative energy
Autoregressive models
Drought
Electric power generation
Electrical faults
Electricity
Electricity distribution
Energy industry
Energy policy
Fossil fuels
Hydroelectric power
Hydrologic data
Methods
Power sources
Precipitation
Prediction models
Rain
Random variables
Renewable resources
River basins
Statistical analysis
Sustainability
Time series
title Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Series%20Analysis%20for%20Predicting%20Hydroelectric%20Power%20Production:%20The%20Ecuador%20Case&rft.jtitle=Sustainability&rft.au=Barzola-Monteses,%20Julio&rft.date=2019-12-01&rft.volume=11&rft.issue=23&rft.spage=6539&rft.pages=6539-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su11236539&rft_dat=%3Cproquest_cross%3E2533334835%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-f3be985c04fed36ca0e980ade49db29b0426496404cab3675c329f3135b5bcb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533334835&rft_id=info:pmid/&rfr_iscdi=true