Loading…
Simulation of Conditioned Semimartingales on Riemannian Manifolds
We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector...
Saved in:
Published in: | arXiv.org 2023-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jensen, Mathias Højgaard Sommer, Stefan |
description | We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector field. This handles the fact that transition densities are generally intractable on geometric spaces. We prove the validity of the scheme by a change of measure argument, and we show how the resulting guided processes can be used in importance sampling and for approximating the density of the unconditioned process. The scheme is used for numerically simulating bridges on two- and three-dimensional manifolds, for approximating otherwise intractable transition densities, and for estimating the diffusion mean of sampled geometric data. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2533577846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533577846</sourcerecordid><originalsourceid>FETCH-proquest_journals_25335778463</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHgu1KRpe5WiePFivZeFJGVLstEm_b8VfICnYZjZsExIeSraSogdy2OcyrIUdSOUkhk79-gXBwkD8WB5F0jjV4zmvfHoYU5IIzgT-Xo80HggQiB-B0IbnI4HtrXgosl_3LPj9fLsbsVrDu_FxDRMYZlpTYNQUqqmaata_nd9ALZ4OfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533577846</pqid></control><display><type>article</type><title>Simulation of Conditioned Semimartingales on Riemannian Manifolds</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jensen, Mathias Højgaard ; Sommer, Stefan</creator><creatorcontrib>Jensen, Mathias Højgaard ; Sommer, Stefan</creatorcontrib><description>We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector field. This handles the fact that transition densities are generally intractable on geometric spaces. We prove the validity of the scheme by a change of measure argument, and we show how the resulting guided processes can be used in importance sampling and for approximating the density of the unconditioned process. The scheme is used for numerically simulating bridges on two- and three-dimensional manifolds, for approximating otherwise intractable transition densities, and for estimating the diffusion mean of sampled geometric data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Density ; Euclidean geometry ; Fields (mathematics) ; Importance sampling ; Manifolds (mathematics) ; Riemann manifold ; Simulation</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2533577846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Jensen, Mathias Højgaard</creatorcontrib><creatorcontrib>Sommer, Stefan</creatorcontrib><title>Simulation of Conditioned Semimartingales on Riemannian Manifolds</title><title>arXiv.org</title><description>We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector field. This handles the fact that transition densities are generally intractable on geometric spaces. We prove the validity of the scheme by a change of measure argument, and we show how the resulting guided processes can be used in importance sampling and for approximating the density of the unconditioned process. The scheme is used for numerically simulating bridges on two- and three-dimensional manifolds, for approximating otherwise intractable transition densities, and for estimating the diffusion mean of sampled geometric data.</description><subject>Approximation</subject><subject>Density</subject><subject>Euclidean geometry</subject><subject>Fields (mathematics)</subject><subject>Importance sampling</subject><subject>Manifolds (mathematics)</subject><subject>Riemann manifold</subject><subject>Simulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHgu1KRpe5WiePFivZeFJGVLstEm_b8VfICnYZjZsExIeSraSogdy2OcyrIUdSOUkhk79-gXBwkD8WB5F0jjV4zmvfHoYU5IIzgT-Xo80HggQiB-B0IbnI4HtrXgosl_3LPj9fLsbsVrDu_FxDRMYZlpTYNQUqqmaata_nd9ALZ4OfU</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Jensen, Mathias Højgaard</creator><creator>Sommer, Stefan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230215</creationdate><title>Simulation of Conditioned Semimartingales on Riemannian Manifolds</title><author>Jensen, Mathias Højgaard ; Sommer, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25335778463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Density</topic><topic>Euclidean geometry</topic><topic>Fields (mathematics)</topic><topic>Importance sampling</topic><topic>Manifolds (mathematics)</topic><topic>Riemann manifold</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Mathias Højgaard</creatorcontrib><creatorcontrib>Sommer, Stefan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Mathias Højgaard</au><au>Sommer, Stefan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simulation of Conditioned Semimartingales on Riemannian Manifolds</atitle><jtitle>arXiv.org</jtitle><date>2023-02-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector field. This handles the fact that transition densities are generally intractable on geometric spaces. We prove the validity of the scheme by a change of measure argument, and we show how the resulting guided processes can be used in importance sampling and for approximating the density of the unconditioned process. The scheme is used for numerically simulating bridges on two- and three-dimensional manifolds, for approximating otherwise intractable transition densities, and for estimating the diffusion mean of sampled geometric data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2533577846 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Approximation Density Euclidean geometry Fields (mathematics) Importance sampling Manifolds (mathematics) Riemann manifold Simulation |
title | Simulation of Conditioned Semimartingales on Riemannian Manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simulation%20of%20Conditioned%20Semimartingales%20on%20Riemannian%20Manifolds&rft.jtitle=arXiv.org&rft.au=Jensen,%20Mathias%20H%C3%B8jgaard&rft.date=2023-02-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2533577846%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25335778463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533577846&rft_id=info:pmid/&rfr_iscdi=true |