Loading…

Simulation of Conditioned Semimartingales on Riemannian Manifolds

We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-02
Main Authors: Jensen, Mathias Højgaard, Sommer, Stefan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jensen, Mathias Højgaard
Sommer, Stefan
description We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector field. This handles the fact that transition densities are generally intractable on geometric spaces. We prove the validity of the scheme by a change of measure argument, and we show how the resulting guided processes can be used in importance sampling and for approximating the density of the unconditioned process. The scheme is used for numerically simulating bridges on two- and three-dimensional manifolds, for approximating otherwise intractable transition densities, and for estimating the diffusion mean of sampled geometric data.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2533577846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533577846</sourcerecordid><originalsourceid>FETCH-proquest_journals_25335778463</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHgu1KRpe5WiePFivZeFJGVLstEm_b8VfICnYZjZsExIeSraSogdy2OcyrIUdSOUkhk79-gXBwkD8WB5F0jjV4zmvfHoYU5IIzgT-Xo80HggQiB-B0IbnI4HtrXgosl_3LPj9fLsbsVrDu_FxDRMYZlpTYNQUqqmaata_nd9ALZ4OfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533577846</pqid></control><display><type>article</type><title>Simulation of Conditioned Semimartingales on Riemannian Manifolds</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jensen, Mathias Højgaard ; Sommer, Stefan</creator><creatorcontrib>Jensen, Mathias Højgaard ; Sommer, Stefan</creatorcontrib><description>We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector field. This handles the fact that transition densities are generally intractable on geometric spaces. We prove the validity of the scheme by a change of measure argument, and we show how the resulting guided processes can be used in importance sampling and for approximating the density of the unconditioned process. The scheme is used for numerically simulating bridges on two- and three-dimensional manifolds, for approximating otherwise intractable transition densities, and for estimating the diffusion mean of sampled geometric data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Density ; Euclidean geometry ; Fields (mathematics) ; Importance sampling ; Manifolds (mathematics) ; Riemann manifold ; Simulation</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2533577846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Jensen, Mathias Højgaard</creatorcontrib><creatorcontrib>Sommer, Stefan</creatorcontrib><title>Simulation of Conditioned Semimartingales on Riemannian Manifolds</title><title>arXiv.org</title><description>We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector field. This handles the fact that transition densities are generally intractable on geometric spaces. We prove the validity of the scheme by a change of measure argument, and we show how the resulting guided processes can be used in importance sampling and for approximating the density of the unconditioned process. The scheme is used for numerically simulating bridges on two- and three-dimensional manifolds, for approximating otherwise intractable transition densities, and for estimating the diffusion mean of sampled geometric data.</description><subject>Approximation</subject><subject>Density</subject><subject>Euclidean geometry</subject><subject>Fields (mathematics)</subject><subject>Importance sampling</subject><subject>Manifolds (mathematics)</subject><subject>Riemann manifold</subject><subject>Simulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHgu1KRpe5WiePFivZeFJGVLstEm_b8VfICnYZjZsExIeSraSogdy2OcyrIUdSOUkhk79-gXBwkD8WB5F0jjV4zmvfHoYU5IIzgT-Xo80HggQiB-B0IbnI4HtrXgosl_3LPj9fLsbsVrDu_FxDRMYZlpTYNQUqqmaata_nd9ALZ4OfU</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Jensen, Mathias Højgaard</creator><creator>Sommer, Stefan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230215</creationdate><title>Simulation of Conditioned Semimartingales on Riemannian Manifolds</title><author>Jensen, Mathias Højgaard ; Sommer, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25335778463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Density</topic><topic>Euclidean geometry</topic><topic>Fields (mathematics)</topic><topic>Importance sampling</topic><topic>Manifolds (mathematics)</topic><topic>Riemann manifold</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Mathias Højgaard</creatorcontrib><creatorcontrib>Sommer, Stefan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Mathias Højgaard</au><au>Sommer, Stefan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simulation of Conditioned Semimartingales on Riemannian Manifolds</atitle><jtitle>arXiv.org</jtitle><date>2023-02-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector field. This handles the fact that transition densities are generally intractable on geometric spaces. We prove the validity of the scheme by a change of measure argument, and we show how the resulting guided processes can be used in importance sampling and for approximating the density of the unconditioned process. The scheme is used for numerically simulating bridges on two- and three-dimensional manifolds, for approximating otherwise intractable transition densities, and for estimating the diffusion mean of sampled geometric data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2533577846
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Approximation
Density
Euclidean geometry
Fields (mathematics)
Importance sampling
Manifolds (mathematics)
Riemann manifold
Simulation
title Simulation of Conditioned Semimartingales on Riemannian Manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simulation%20of%20Conditioned%20Semimartingales%20on%20Riemannian%20Manifolds&rft.jtitle=arXiv.org&rft.au=Jensen,%20Mathias%20H%C3%B8jgaard&rft.date=2023-02-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2533577846%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25335778463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533577846&rft_id=info:pmid/&rfr_iscdi=true