Loading…

Current Flow Analysis of PV Arrays under Voltage Mismatch Conditions and an Inverter Failure

In PV (Photovoltaic) systems, the PV array is a structure in which many PV strings are connected in parallel. The voltage mismatch between PV strings, in which PV modules are connected in a series, occurs due to a voltage decrease in some modules. In this paper, research on the electrical characteri...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-12, Vol.9 (23), p.5163
Main Authors: Shin, Woo Gyun, Lim, Jong Rok, Kang, Gi Hwan, Ju, Young Chul, Hwang, Hye Mi, Ko, Suk Whan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In PV (Photovoltaic) systems, the PV array is a structure in which many PV strings are connected in parallel. The voltage mismatch between PV strings, in which PV modules are connected in a series, occurs due to a voltage decrease in some modules. In this paper, research on the electrical characteristics of PV arrays due to a voltage mismatch was conducted. Considering the voltage mismatch, experiments on partial shading, the non-uniformity of irradiance, and the failure of bypass diodes were conducted on the PV module level. It was confirmed that the open-circuit voltage greatly decreased due to the failure of bypass diodes, which is among the causes of voltage mismatch. From the simulation results at the PV array level, it can be seen that a reverse current flowed into the low-potential string, which includes PV modules, causing the failure of the bypass diodes. Measuring the reverse current at one low-potential string, it was found that, in four parallel circuits, the reverse current was 12 A. For this reason, in large PV plants, an overcurrent can flow into the fuse due to the potential difference between strings, causing an output decrease of PV plants and the burnout of fuses.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9235163