Loading…

Pseudo-Static Analysis on the Shifting-Girder Process of the Novel Rail-Cable-Shifting-Girder Technique for the Long Span Suspension Bridge

The rail-cable-shifting-girder (RCSG) technique is a new erecting method for the main girders of the long span suspension bridge in rural mountain areas with poor transportation and no navigable rivers for carrying large components. The pseudo-static analysis of the shifting-girder process for this...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-12, Vol.9 (23), p.5158
Main Authors: Pan, Quan, Yi, Zhuangpeng, Yan, Donghuang, Xu, Hongsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rail-cable-shifting-girder (RCSG) technique is a new erecting method for the main girders of the long span suspension bridge in rural mountain areas with poor transportation and no navigable rivers for carrying large components. The pseudo-static analysis of the shifting-girder process for this girder erecting technique is performed. The global mechanical model of the double-layer cable system in the shifting-girder process is established, by analytically modeling the main-cable, rail cable, and slings according to cable’s basic assumptions. Based on the flexible cable theory, the main-cable segments are simulated as segmental catenary elements, the slings are considered as straight cable elements, the rail-cable segment that the shifting-girder trolley is moving on is simulated as multiple straight cable elements and other rail-cable segments are considered as single straight cable elements. The solving program is developed to obtain the pseudo-static responses including the forces and deflections of the shifting-girder system undergoing girder loads. Meanwhile, a global indoor reduced-scale model of shifting-girder system is designed to validate the presented theoretical results, by taking the Aizhai suspension bridge as engineering background. The results from the presented theoretical method match well with the measured experimental results of the indoor model test. The forces and deflections of the main-cable, rail-cable, and slings for the 21 working cases of erecting girder segments exhibit some specific distribution regularities. The presented theoretical method is able to correctly and effectively solve the pseudo-static responses of the RCSG system undergoing girder loads for the long span suspension bridge adopting the construction method of the RCSG technique.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9235158