Loading…

Adaptive RBF neural network-based control of an underactuated control moment gyroscope

Radial basis function (RBF) neural networks have the advantages of excellent ability for the learning of the processes and certain immunity to disturbances when using in control systems. The robust trajectory tracking control of complex underactuated mechanical systems is a difficult problem that re...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2021-06, Vol.33 (12), p.6805-6818
Main Authors: Montoya-Cháirez, Jorge, Rossomando, Fracisco G., Carelli, Ricardo, Santibáñez, Víctor, Moreno-Valenzuela, Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-51f18953eb76310785ec397db17588b1a8041df292b4b72b232d2d5bd9cbe45a3
cites cdi_FETCH-LOGICAL-c319t-51f18953eb76310785ec397db17588b1a8041df292b4b72b232d2d5bd9cbe45a3
container_end_page 6818
container_issue 12
container_start_page 6805
container_title Neural computing & applications
container_volume 33
creator Montoya-Cháirez, Jorge
Rossomando, Fracisco G.
Carelli, Ricardo
Santibáñez, Víctor
Moreno-Valenzuela, Javier
description Radial basis function (RBF) neural networks have the advantages of excellent ability for the learning of the processes and certain immunity to disturbances when using in control systems. The robust trajectory tracking control of complex underactuated mechanical systems is a difficult problem that requires effective approaches. In particular, adaptive RBF neural networks are a good candidate to deal with that type of problems. In this document, a new method to solve the problem of trajectory tracking of an underactuated control moment gyroscope is addressed. This work is focused on the approximation of the unknown function by using an adaptive neural network with RBF fully tuned. The stability of the proposed method is studied by showing that the trajectory tracking error converges to zero while the solutions of the internal dynamics are bounded for all time. Comparisons between the model-based controller, a cascade PID scheme, the adaptive regressor-based controller, and an adaptive neural network-based controller previously studied are performed by experiments with and without two kinds of disturbances in order to validate the proposed method.
doi_str_mv 10.1007/s00521-020-05456-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2534472017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2534472017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-51f18953eb76310785ec397db17588b1a8041df292b4b72b232d2d5bd9cbe45a3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrA9ejJbZJZ1mJVKAiibkMyyZTWdjImGaVvb3QEXbn6F__lHD6EzjFcYgBxFQE4wSUQKIEzXpXyAE0wo7SkwOUhmkDNsl0xeoxOYtwAAKskn6CXmdV9Wr-74vF6UXRuCHqbJX348FoaHZ0tGt-l4LeFbwvdFUNnXdBNGnT64-38znWpWO2Dj43v3Sk6avU2urMfnaLnxc3T_K5cPtzez2fLsqG4TiXHLZY1p86IimIQkruG1sIaLLiUBmsJDNuW1MQwI4ghlFhiubF1Yxzjmk7RxbjbB_82uJjUxg-hyycV4ZQxQQCLnCJjqsnvxeBa1Yf1Toe9wqC--KmRn8r81Dc_JXOJjqWYw93Khd_pf1qfBudy8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534472017</pqid></control><display><type>article</type><title>Adaptive RBF neural network-based control of an underactuated control moment gyroscope</title><source>Springer Link</source><creator>Montoya-Cháirez, Jorge ; Rossomando, Fracisco G. ; Carelli, Ricardo ; Santibáñez, Víctor ; Moreno-Valenzuela, Javier</creator><creatorcontrib>Montoya-Cháirez, Jorge ; Rossomando, Fracisco G. ; Carelli, Ricardo ; Santibáñez, Víctor ; Moreno-Valenzuela, Javier</creatorcontrib><description>Radial basis function (RBF) neural networks have the advantages of excellent ability for the learning of the processes and certain immunity to disturbances when using in control systems. The robust trajectory tracking control of complex underactuated mechanical systems is a difficult problem that requires effective approaches. In particular, adaptive RBF neural networks are a good candidate to deal with that type of problems. In this document, a new method to solve the problem of trajectory tracking of an underactuated control moment gyroscope is addressed. This work is focused on the approximation of the unknown function by using an adaptive neural network with RBF fully tuned. The stability of the proposed method is studied by showing that the trajectory tracking error converges to zero while the solutions of the internal dynamics are bounded for all time. Comparisons between the model-based controller, a cascade PID scheme, the adaptive regressor-based controller, and an adaptive neural network-based controller previously studied are performed by experiments with and without two kinds of disturbances in order to validate the proposed method.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-05456-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive control ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Controllers ; Data Mining and Knowledge Discovery ; Disturbances ; Gyroscopes ; Image Processing and Computer Vision ; Mechanical systems ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Proportional integral derivative ; Radial basis function ; Robust control ; System effectiveness ; Tracking control ; Tracking errors ; Trajectory control</subject><ispartof>Neural computing &amp; applications, 2021-06, Vol.33 (12), p.6805-6818</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-51f18953eb76310785ec397db17588b1a8041df292b4b72b232d2d5bd9cbe45a3</citedby><cites>FETCH-LOGICAL-c319t-51f18953eb76310785ec397db17588b1a8041df292b4b72b232d2d5bd9cbe45a3</cites><orcidid>0000-0002-7792-8101 ; 0000-0003-0688-7020 ; 0000-0002-6951-9797 ; 0000-0003-0670-5979 ; 0000-0002-0870-8615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Montoya-Cháirez, Jorge</creatorcontrib><creatorcontrib>Rossomando, Fracisco G.</creatorcontrib><creatorcontrib>Carelli, Ricardo</creatorcontrib><creatorcontrib>Santibáñez, Víctor</creatorcontrib><creatorcontrib>Moreno-Valenzuela, Javier</creatorcontrib><title>Adaptive RBF neural network-based control of an underactuated control moment gyroscope</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Radial basis function (RBF) neural networks have the advantages of excellent ability for the learning of the processes and certain immunity to disturbances when using in control systems. The robust trajectory tracking control of complex underactuated mechanical systems is a difficult problem that requires effective approaches. In particular, adaptive RBF neural networks are a good candidate to deal with that type of problems. In this document, a new method to solve the problem of trajectory tracking of an underactuated control moment gyroscope is addressed. This work is focused on the approximation of the unknown function by using an adaptive neural network with RBF fully tuned. The stability of the proposed method is studied by showing that the trajectory tracking error converges to zero while the solutions of the internal dynamics are bounded for all time. Comparisons between the model-based controller, a cascade PID scheme, the adaptive regressor-based controller, and an adaptive neural network-based controller previously studied are performed by experiments with and without two kinds of disturbances in order to validate the proposed method.</description><subject>Adaptive control</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Controllers</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Disturbances</subject><subject>Gyroscopes</subject><subject>Image Processing and Computer Vision</subject><subject>Mechanical systems</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Proportional integral derivative</subject><subject>Radial basis function</subject><subject>Robust control</subject><subject>System effectiveness</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Trajectory control</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrA9ejJbZJZ1mJVKAiibkMyyZTWdjImGaVvb3QEXbn6F__lHD6EzjFcYgBxFQE4wSUQKIEzXpXyAE0wo7SkwOUhmkDNsl0xeoxOYtwAAKskn6CXmdV9Wr-74vF6UXRuCHqbJX348FoaHZ0tGt-l4LeFbwvdFUNnXdBNGnT64-38znWpWO2Dj43v3Sk6avU2urMfnaLnxc3T_K5cPtzez2fLsqG4TiXHLZY1p86IimIQkruG1sIaLLiUBmsJDNuW1MQwI4ghlFhiubF1Yxzjmk7RxbjbB_82uJjUxg-hyycV4ZQxQQCLnCJjqsnvxeBa1Yf1Toe9wqC--KmRn8r81Dc_JXOJjqWYw93Khd_pf1qfBudy8g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Montoya-Cháirez, Jorge</creator><creator>Rossomando, Fracisco G.</creator><creator>Carelli, Ricardo</creator><creator>Santibáñez, Víctor</creator><creator>Moreno-Valenzuela, Javier</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7792-8101</orcidid><orcidid>https://orcid.org/0000-0003-0688-7020</orcidid><orcidid>https://orcid.org/0000-0002-6951-9797</orcidid><orcidid>https://orcid.org/0000-0003-0670-5979</orcidid><orcidid>https://orcid.org/0000-0002-0870-8615</orcidid></search><sort><creationdate>20210601</creationdate><title>Adaptive RBF neural network-based control of an underactuated control moment gyroscope</title><author>Montoya-Cháirez, Jorge ; Rossomando, Fracisco G. ; Carelli, Ricardo ; Santibáñez, Víctor ; Moreno-Valenzuela, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-51f18953eb76310785ec397db17588b1a8041df292b4b72b232d2d5bd9cbe45a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Controllers</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Disturbances</topic><topic>Gyroscopes</topic><topic>Image Processing and Computer Vision</topic><topic>Mechanical systems</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Proportional integral derivative</topic><topic>Radial basis function</topic><topic>Robust control</topic><topic>System effectiveness</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montoya-Cháirez, Jorge</creatorcontrib><creatorcontrib>Rossomando, Fracisco G.</creatorcontrib><creatorcontrib>Carelli, Ricardo</creatorcontrib><creatorcontrib>Santibáñez, Víctor</creatorcontrib><creatorcontrib>Moreno-Valenzuela, Javier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montoya-Cháirez, Jorge</au><au>Rossomando, Fracisco G.</au><au>Carelli, Ricardo</au><au>Santibáñez, Víctor</au><au>Moreno-Valenzuela, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive RBF neural network-based control of an underactuated control moment gyroscope</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>33</volume><issue>12</issue><spage>6805</spage><epage>6818</epage><pages>6805-6818</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Radial basis function (RBF) neural networks have the advantages of excellent ability for the learning of the processes and certain immunity to disturbances when using in control systems. The robust trajectory tracking control of complex underactuated mechanical systems is a difficult problem that requires effective approaches. In particular, adaptive RBF neural networks are a good candidate to deal with that type of problems. In this document, a new method to solve the problem of trajectory tracking of an underactuated control moment gyroscope is addressed. This work is focused on the approximation of the unknown function by using an adaptive neural network with RBF fully tuned. The stability of the proposed method is studied by showing that the trajectory tracking error converges to zero while the solutions of the internal dynamics are bounded for all time. Comparisons between the model-based controller, a cascade PID scheme, the adaptive regressor-based controller, and an adaptive neural network-based controller previously studied are performed by experiments with and without two kinds of disturbances in order to validate the proposed method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-05456-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7792-8101</orcidid><orcidid>https://orcid.org/0000-0003-0688-7020</orcidid><orcidid>https://orcid.org/0000-0002-6951-9797</orcidid><orcidid>https://orcid.org/0000-0003-0670-5979</orcidid><orcidid>https://orcid.org/0000-0002-0870-8615</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2021-06, Vol.33 (12), p.6805-6818
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2534472017
source Springer Link
subjects Adaptive control
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Controllers
Data Mining and Knowledge Discovery
Disturbances
Gyroscopes
Image Processing and Computer Vision
Mechanical systems
Neural networks
Original Article
Probability and Statistics in Computer Science
Proportional integral derivative
Radial basis function
Robust control
System effectiveness
Tracking control
Tracking errors
Trajectory control
title Adaptive RBF neural network-based control of an underactuated control moment gyroscope
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20RBF%20neural%20network-based%20control%20of%20an%20underactuated%20control%20moment%20gyroscope&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Montoya-Ch%C3%A1irez,%20Jorge&rft.date=2021-06-01&rft.volume=33&rft.issue=12&rft.spage=6805&rft.epage=6818&rft.pages=6805-6818&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-05456-8&rft_dat=%3Cproquest_cross%3E2534472017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-51f18953eb76310785ec397db17588b1a8041df292b4b72b232d2d5bd9cbe45a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534472017&rft_id=info:pmid/&rfr_iscdi=true