Loading…

Approaching the cold-start problem using community detection based alternating least square factorization in recommendation systems

In e-commerce, the opinion of users about products and the reviews are identified using recommender systems. Collaborative filtering techniques are popularly used techniques for giving recommendations to the users. One of the common challenges in the collaborative filtering technique for giving reco...

Full description

Saved in:
Bibliographic Details
Published in:Evolutionary intelligence 2021-06, Vol.14 (2), p.835-849
Main Authors: Paleti, Lakshmikanth, Radha Krishna, P., Murthy, J. V. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-48a98ba4ba6ce8c332c003e15754e775fed7a303aac797c7edb9fb5cfa2f569f3
cites cdi_FETCH-LOGICAL-c319t-48a98ba4ba6ce8c332c003e15754e775fed7a303aac797c7edb9fb5cfa2f569f3
container_end_page 849
container_issue 2
container_start_page 835
container_title Evolutionary intelligence
container_volume 14
creator Paleti, Lakshmikanth
Radha Krishna, P.
Murthy, J. V. R.
description In e-commerce, the opinion of users about products and the reviews are identified using recommender systems. Collaborative filtering techniques are popularly used techniques for giving recommendations to the users. One of the common challenges in the collaborative filtering technique for giving recommendations is cold start problem, which occurs due to insufficient information about new items and new users. This paper proposes a hybrid approach entitled LA-ALS to address the cold start problem to provide effective recommendations. The LA-ALS approach makes use of the benefits of both Louvain’s algorithm and alternating least square algorithm. The Louvain’s algorithm is used to analyze the relationship between users and alternating least square algorithm is used to predict recommendations. Experiments are carried out by using real-world datasets such as Movielens and Facebook databases. The effectiveness of the LA-ALS approach is shown with two parameters namely mean absolute error and root mean square error. The results showed that LA-ALS approach generated better recommendations when compared with the existing techniques such as k-nearest neighbors and singular value decomposition.
doi_str_mv 10.1007/s12065-020-00464-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535301111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535301111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-48a98ba4ba6ce8c332c003e15754e775fed7a303aac797c7edb9fb5cfa2f569f3</originalsourceid><addsrcrecordid>eNp9kDtPxTAMhSsEEs8_wBSJueA0TXM7IsRLQmKBOXJTl9urPi5xOpSVP04uRbDhxVb8nSPnJMm5hEsJYK5YZlDoFDJIAfIiT-e95Eiu4qBLafZ_ZygPk2PmDUCRgcmPks_r7daP6Nbt8CbCmoQbuzrlgD6IuKg66sXEu6Ub-34a2jCLmgK50I6DqJCpFtgF8gOGHdURchD8PqEn0aALo28_8BtuB-Fp50JDvbzwzIF6Pk0OGuyYzn76SfJ6d_ty85A-Pd8_3lw_pU7JMqT5CstVhXmFhaOVUypzAIqkNjonY3RDtUEFCtGZ0jhDdVU2lXYNZo0uykadJBeLb_zY-0Qc7Gac4uEd20wrrUDGilS2UM6PzJ4au_Vtj362EuwubLuEbWPY9jtsO0eRWkQc4eGN_J_1P6ovO5mHdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535301111</pqid></control><display><type>article</type><title>Approaching the cold-start problem using community detection based alternating least square factorization in recommendation systems</title><source>Springer Nature</source><creator>Paleti, Lakshmikanth ; Radha Krishna, P. ; Murthy, J. V. R.</creator><creatorcontrib>Paleti, Lakshmikanth ; Radha Krishna, P. ; Murthy, J. V. R.</creatorcontrib><description>In e-commerce, the opinion of users about products and the reviews are identified using recommender systems. Collaborative filtering techniques are popularly used techniques for giving recommendations to the users. One of the common challenges in the collaborative filtering technique for giving recommendations is cold start problem, which occurs due to insufficient information about new items and new users. This paper proposes a hybrid approach entitled LA-ALS to address the cold start problem to provide effective recommendations. The LA-ALS approach makes use of the benefits of both Louvain’s algorithm and alternating least square algorithm. The Louvain’s algorithm is used to analyze the relationship between users and alternating least square algorithm is used to predict recommendations. Experiments are carried out by using real-world datasets such as Movielens and Facebook databases. The effectiveness of the LA-ALS approach is shown with two parameters namely mean absolute error and root mean square error. The results showed that LA-ALS approach generated better recommendations when compared with the existing techniques such as k-nearest neighbors and singular value decomposition.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-020-00464-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Cold starts ; Collaboration ; Control ; Engineering ; Filtration ; Least squares ; Mathematical and Computational Engineering ; Mechatronics ; Recommender systems ; Robotics ; Singular value decomposition ; Special Issue ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2021-06, Vol.14 (2), p.835-849</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-48a98ba4ba6ce8c332c003e15754e775fed7a303aac797c7edb9fb5cfa2f569f3</citedby><cites>FETCH-LOGICAL-c319t-48a98ba4ba6ce8c332c003e15754e775fed7a303aac797c7edb9fb5cfa2f569f3</cites><orcidid>0000-0001-8603-8090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Paleti, Lakshmikanth</creatorcontrib><creatorcontrib>Radha Krishna, P.</creatorcontrib><creatorcontrib>Murthy, J. V. R.</creatorcontrib><title>Approaching the cold-start problem using community detection based alternating least square factorization in recommendation systems</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>In e-commerce, the opinion of users about products and the reviews are identified using recommender systems. Collaborative filtering techniques are popularly used techniques for giving recommendations to the users. One of the common challenges in the collaborative filtering technique for giving recommendations is cold start problem, which occurs due to insufficient information about new items and new users. This paper proposes a hybrid approach entitled LA-ALS to address the cold start problem to provide effective recommendations. The LA-ALS approach makes use of the benefits of both Louvain’s algorithm and alternating least square algorithm. The Louvain’s algorithm is used to analyze the relationship between users and alternating least square algorithm is used to predict recommendations. Experiments are carried out by using real-world datasets such as Movielens and Facebook databases. The effectiveness of the LA-ALS approach is shown with two parameters namely mean absolute error and root mean square error. The results showed that LA-ALS approach generated better recommendations when compared with the existing techniques such as k-nearest neighbors and singular value decomposition.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Cold starts</subject><subject>Collaboration</subject><subject>Control</subject><subject>Engineering</subject><subject>Filtration</subject><subject>Least squares</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Recommender systems</subject><subject>Robotics</subject><subject>Singular value decomposition</subject><subject>Special Issue</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPxTAMhSsEEs8_wBSJueA0TXM7IsRLQmKBOXJTl9urPi5xOpSVP04uRbDhxVb8nSPnJMm5hEsJYK5YZlDoFDJIAfIiT-e95Eiu4qBLafZ_ZygPk2PmDUCRgcmPks_r7daP6Nbt8CbCmoQbuzrlgD6IuKg66sXEu6Ub-34a2jCLmgK50I6DqJCpFtgF8gOGHdURchD8PqEn0aALo28_8BtuB-Fp50JDvbzwzIF6Pk0OGuyYzn76SfJ6d_ty85A-Pd8_3lw_pU7JMqT5CstVhXmFhaOVUypzAIqkNjonY3RDtUEFCtGZ0jhDdVU2lXYNZo0uykadJBeLb_zY-0Qc7Gac4uEd20wrrUDGilS2UM6PzJ4au_Vtj362EuwubLuEbWPY9jtsO0eRWkQc4eGN_J_1P6ovO5mHdQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Paleti, Lakshmikanth</creator><creator>Radha Krishna, P.</creator><creator>Murthy, J. V. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8603-8090</orcidid></search><sort><creationdate>20210601</creationdate><title>Approaching the cold-start problem using community detection based alternating least square factorization in recommendation systems</title><author>Paleti, Lakshmikanth ; Radha Krishna, P. ; Murthy, J. V. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-48a98ba4ba6ce8c332c003e15754e775fed7a303aac797c7edb9fb5cfa2f569f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Cold starts</topic><topic>Collaboration</topic><topic>Control</topic><topic>Engineering</topic><topic>Filtration</topic><topic>Least squares</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Recommender systems</topic><topic>Robotics</topic><topic>Singular value decomposition</topic><topic>Special Issue</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paleti, Lakshmikanth</creatorcontrib><creatorcontrib>Radha Krishna, P.</creatorcontrib><creatorcontrib>Murthy, J. V. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paleti, Lakshmikanth</au><au>Radha Krishna, P.</au><au>Murthy, J. V. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaching the cold-start problem using community detection based alternating least square factorization in recommendation systems</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>835</spage><epage>849</epage><pages>835-849</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>In e-commerce, the opinion of users about products and the reviews are identified using recommender systems. Collaborative filtering techniques are popularly used techniques for giving recommendations to the users. One of the common challenges in the collaborative filtering technique for giving recommendations is cold start problem, which occurs due to insufficient information about new items and new users. This paper proposes a hybrid approach entitled LA-ALS to address the cold start problem to provide effective recommendations. The LA-ALS approach makes use of the benefits of both Louvain’s algorithm and alternating least square algorithm. The Louvain’s algorithm is used to analyze the relationship between users and alternating least square algorithm is used to predict recommendations. Experiments are carried out by using real-world datasets such as Movielens and Facebook databases. The effectiveness of the LA-ALS approach is shown with two parameters namely mean absolute error and root mean square error. The results showed that LA-ALS approach generated better recommendations when compared with the existing techniques such as k-nearest neighbors and singular value decomposition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-020-00464-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8603-8090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5909
ispartof Evolutionary intelligence, 2021-06, Vol.14 (2), p.835-849
issn 1864-5909
1864-5917
language eng
recordid cdi_proquest_journals_2535301111
source Springer Nature
subjects Algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Cold starts
Collaboration
Control
Engineering
Filtration
Least squares
Mathematical and Computational Engineering
Mechatronics
Recommender systems
Robotics
Singular value decomposition
Special Issue
Statistical Physics and Dynamical Systems
title Approaching the cold-start problem using community detection based alternating least square factorization in recommendation systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaching%20the%20cold-start%20problem%20using%20community%20detection%20based%20alternating%20least%20square%20factorization%20in%20recommendation%20systems&rft.jtitle=Evolutionary%20intelligence&rft.au=Paleti,%20Lakshmikanth&rft.date=2021-06-01&rft.volume=14&rft.issue=2&rft.spage=835&rft.epage=849&rft.pages=835-849&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-020-00464-y&rft_dat=%3Cproquest_cross%3E2535301111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-48a98ba4ba6ce8c332c003e15754e775fed7a303aac797c7edb9fb5cfa2f569f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535301111&rft_id=info:pmid/&rfr_iscdi=true