Loading…
Identification of user profiles in online social networks: a combined approach with face recognition
This paper suggests improving the previously existing method of identifying user profiles in different online social networks by adding face recognition results to the model. It is assumed that the method will become more stable for identifying people with the same name, city and age. It will help t...
Saved in:
Published in: | Journal of physics. Conference series 2021-05, Vol.1864 (1), p.12119 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3179-374ad7a53ccae1d4d26e7949c062943ad3d64b404f139abbc63d46742f8c99083 |
container_end_page | |
container_issue | 1 |
container_start_page | 12119 |
container_title | Journal of physics. Conference series |
container_volume | 1864 |
creator | Oliseenko, V.D. Abramov, M.V. |
description | This paper suggests improving the previously existing method of identifying user profiles in different online social networks by adding face recognition results to the model. It is assumed that the method will become more stable for identifying people with the same name, city and age. It will help to find more user profiles in different online social networks, which will improve the estimation of their personal characteristics. Evaluating user personality traits is one of the key tasks in protecting employees of enterprises and companies from social engineering attacks. |
doi_str_mv | 10.1088/1742-6596/1864/1/012119 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535568006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535568006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-374ad7a53ccae1d4d26e7949c062943ad3d64b404f139abbc63d46742f8c99083</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3Qm3SpGninQw_JoKCeh3SfLjMralJx_Dfm1KZCIK5STjned9z8mbZKYIXCDJWoJqUOa04LRCjpEAFRCVCfC-b7Dr7uzdjh9lRjEsIcTr1JNNzbdreWadk73wLvAWbaALogrduZSJwqdauXGtA9MrJFWhNv_XhPV4CCZRfN6mlgeySQKoF2Lp-AaxUBgSj_FvrBtfj7MDKVTQn3_c0e725fpnd5Q-Pt_PZ1UOuMKp5jmsidS0rrJQ0SBNdUlNzwhWkJSdYaqwpaQgkFmEum0ZRrAlNH7NMcQ4ZnmZno29a5mNjYi-WfhPaNFKUFa4qyiCkiapHSgUfYzBWdMGtZfgUCIohUjGEJYbgxBCpQGKMNCnPR6Xz3Y_1_dPs-TcoOm0TjP-A_xvxBXQRhqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535568006</pqid></control><display><type>article</type><title>Identification of user profiles in online social networks: a combined approach with face recognition</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Oliseenko, V.D. ; Abramov, M.V.</creator><creatorcontrib>Oliseenko, V.D. ; Abramov, M.V.</creatorcontrib><description>This paper suggests improving the previously existing method of identifying user profiles in different online social networks by adding face recognition results to the model. It is assumed that the method will become more stable for identifying people with the same name, city and age. It will help to find more user profiles in different online social networks, which will improve the estimation of their personal characteristics. Evaluating user personality traits is one of the key tasks in protecting employees of enterprises and companies from social engineering attacks.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1864/1/012119</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Face recognition ; Identification methods ; Physics ; Social networks ; User profiles</subject><ispartof>Journal of physics. Conference series, 2021-05, Vol.1864 (1), p.12119</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3179-374ad7a53ccae1d4d26e7949c062943ad3d64b404f139abbc63d46742f8c99083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2535568006?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Oliseenko, V.D.</creatorcontrib><creatorcontrib>Abramov, M.V.</creatorcontrib><title>Identification of user profiles in online social networks: a combined approach with face recognition</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>This paper suggests improving the previously existing method of identifying user profiles in different online social networks by adding face recognition results to the model. It is assumed that the method will become more stable for identifying people with the same name, city and age. It will help to find more user profiles in different online social networks, which will improve the estimation of their personal characteristics. Evaluating user personality traits is one of the key tasks in protecting employees of enterprises and companies from social engineering attacks.</description><subject>Face recognition</subject><subject>Identification methods</subject><subject>Physics</subject><subject>Social networks</subject><subject>User profiles</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3Qm3SpGninQw_JoKCeh3SfLjMralJx_Dfm1KZCIK5STjned9z8mbZKYIXCDJWoJqUOa04LRCjpEAFRCVCfC-b7Dr7uzdjh9lRjEsIcTr1JNNzbdreWadk73wLvAWbaALogrduZSJwqdauXGtA9MrJFWhNv_XhPV4CCZRfN6mlgeySQKoF2Lp-AaxUBgSj_FvrBtfj7MDKVTQn3_c0e725fpnd5Q-Pt_PZ1UOuMKp5jmsidS0rrJQ0SBNdUlNzwhWkJSdYaqwpaQgkFmEum0ZRrAlNH7NMcQ4ZnmZno29a5mNjYi-WfhPaNFKUFa4qyiCkiapHSgUfYzBWdMGtZfgUCIohUjGEJYbgxBCpQGKMNCnPR6Xz3Y_1_dPs-TcoOm0TjP-A_xvxBXQRhqU</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Oliseenko, V.D.</creator><creator>Abramov, M.V.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210501</creationdate><title>Identification of user profiles in online social networks: a combined approach with face recognition</title><author>Oliseenko, V.D. ; Abramov, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-374ad7a53ccae1d4d26e7949c062943ad3d64b404f139abbc63d46742f8c99083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Face recognition</topic><topic>Identification methods</topic><topic>Physics</topic><topic>Social networks</topic><topic>User profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliseenko, V.D.</creatorcontrib><creatorcontrib>Abramov, M.V.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliseenko, V.D.</au><au>Abramov, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of user profiles in online social networks: a combined approach with face recognition</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>1864</volume><issue>1</issue><spage>12119</spage><pages>12119-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This paper suggests improving the previously existing method of identifying user profiles in different online social networks by adding face recognition results to the model. It is assumed that the method will become more stable for identifying people with the same name, city and age. It will help to find more user profiles in different online social networks, which will improve the estimation of their personal characteristics. Evaluating user personality traits is one of the key tasks in protecting employees of enterprises and companies from social engineering attacks.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1864/1/012119</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-05, Vol.1864 (1), p.12119 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2535568006 |
source | Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry |
subjects | Face recognition Identification methods Physics Social networks User profiles |
title | Identification of user profiles in online social networks: a combined approach with face recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20user%20profiles%20in%20online%20social%20networks:%20a%20combined%20approach%20with%20face%20recognition&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Oliseenko,%20V.D.&rft.date=2021-05-01&rft.volume=1864&rft.issue=1&rft.spage=12119&rft.pages=12119-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1864/1/012119&rft_dat=%3Cproquest_cross%3E2535568006%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3179-374ad7a53ccae1d4d26e7949c062943ad3d64b404f139abbc63d46742f8c99083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535568006&rft_id=info:pmid/&rfr_iscdi=true |