Loading…

Identification of user profiles in online social networks: a combined approach with face recognition

This paper suggests improving the previously existing method of identifying user profiles in different online social networks by adding face recognition results to the model. It is assumed that the method will become more stable for identifying people with the same name, city and age. It will help t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-05, Vol.1864 (1), p.12119
Main Authors: Oliseenko, V.D., Abramov, M.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3179-374ad7a53ccae1d4d26e7949c062943ad3d64b404f139abbc63d46742f8c99083
container_end_page
container_issue 1
container_start_page 12119
container_title Journal of physics. Conference series
container_volume 1864
creator Oliseenko, V.D.
Abramov, M.V.
description This paper suggests improving the previously existing method of identifying user profiles in different online social networks by adding face recognition results to the model. It is assumed that the method will become more stable for identifying people with the same name, city and age. It will help to find more user profiles in different online social networks, which will improve the estimation of their personal characteristics. Evaluating user personality traits is one of the key tasks in protecting employees of enterprises and companies from social engineering attacks.
doi_str_mv 10.1088/1742-6596/1864/1/012119
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535568006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535568006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-374ad7a53ccae1d4d26e7949c062943ad3d64b404f139abbc63d46742f8c99083</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3Qm3SpGninQw_JoKCeh3SfLjMralJx_Dfm1KZCIK5STjned9z8mbZKYIXCDJWoJqUOa04LRCjpEAFRCVCfC-b7Dr7uzdjh9lRjEsIcTr1JNNzbdreWadk73wLvAWbaALogrduZSJwqdauXGtA9MrJFWhNv_XhPV4CCZRfN6mlgeySQKoF2Lp-AaxUBgSj_FvrBtfj7MDKVTQn3_c0e725fpnd5Q-Pt_PZ1UOuMKp5jmsidS0rrJQ0SBNdUlNzwhWkJSdYaqwpaQgkFmEum0ZRrAlNH7NMcQ4ZnmZno29a5mNjYi-WfhPaNFKUFa4qyiCkiapHSgUfYzBWdMGtZfgUCIohUjGEJYbgxBCpQGKMNCnPR6Xz3Y_1_dPs-TcoOm0TjP-A_xvxBXQRhqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535568006</pqid></control><display><type>article</type><title>Identification of user profiles in online social networks: a combined approach with face recognition</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Oliseenko, V.D. ; Abramov, M.V.</creator><creatorcontrib>Oliseenko, V.D. ; Abramov, M.V.</creatorcontrib><description>This paper suggests improving the previously existing method of identifying user profiles in different online social networks by adding face recognition results to the model. It is assumed that the method will become more stable for identifying people with the same name, city and age. It will help to find more user profiles in different online social networks, which will improve the estimation of their personal characteristics. Evaluating user personality traits is one of the key tasks in protecting employees of enterprises and companies from social engineering attacks.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1864/1/012119</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Face recognition ; Identification methods ; Physics ; Social networks ; User profiles</subject><ispartof>Journal of physics. Conference series, 2021-05, Vol.1864 (1), p.12119</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3179-374ad7a53ccae1d4d26e7949c062943ad3d64b404f139abbc63d46742f8c99083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2535568006?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Oliseenko, V.D.</creatorcontrib><creatorcontrib>Abramov, M.V.</creatorcontrib><title>Identification of user profiles in online social networks: a combined approach with face recognition</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>This paper suggests improving the previously existing method of identifying user profiles in different online social networks by adding face recognition results to the model. It is assumed that the method will become more stable for identifying people with the same name, city and age. It will help to find more user profiles in different online social networks, which will improve the estimation of their personal characteristics. Evaluating user personality traits is one of the key tasks in protecting employees of enterprises and companies from social engineering attacks.</description><subject>Face recognition</subject><subject>Identification methods</subject><subject>Physics</subject><subject>Social networks</subject><subject>User profiles</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3Qm3SpGninQw_JoKCeh3SfLjMralJx_Dfm1KZCIK5STjned9z8mbZKYIXCDJWoJqUOa04LRCjpEAFRCVCfC-b7Dr7uzdjh9lRjEsIcTr1JNNzbdreWadk73wLvAWbaALogrduZSJwqdauXGtA9MrJFWhNv_XhPV4CCZRfN6mlgeySQKoF2Lp-AaxUBgSj_FvrBtfj7MDKVTQn3_c0e725fpnd5Q-Pt_PZ1UOuMKp5jmsidS0rrJQ0SBNdUlNzwhWkJSdYaqwpaQgkFmEum0ZRrAlNH7NMcQ4ZnmZno29a5mNjYi-WfhPaNFKUFa4qyiCkiapHSgUfYzBWdMGtZfgUCIohUjGEJYbgxBCpQGKMNCnPR6Xz3Y_1_dPs-TcoOm0TjP-A_xvxBXQRhqU</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Oliseenko, V.D.</creator><creator>Abramov, M.V.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210501</creationdate><title>Identification of user profiles in online social networks: a combined approach with face recognition</title><author>Oliseenko, V.D. ; Abramov, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-374ad7a53ccae1d4d26e7949c062943ad3d64b404f139abbc63d46742f8c99083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Face recognition</topic><topic>Identification methods</topic><topic>Physics</topic><topic>Social networks</topic><topic>User profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliseenko, V.D.</creatorcontrib><creatorcontrib>Abramov, M.V.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliseenko, V.D.</au><au>Abramov, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of user profiles in online social networks: a combined approach with face recognition</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>1864</volume><issue>1</issue><spage>12119</spage><pages>12119-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This paper suggests improving the previously existing method of identifying user profiles in different online social networks by adding face recognition results to the model. It is assumed that the method will become more stable for identifying people with the same name, city and age. It will help to find more user profiles in different online social networks, which will improve the estimation of their personal characteristics. Evaluating user personality traits is one of the key tasks in protecting employees of enterprises and companies from social engineering attacks.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1864/1/012119</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-05, Vol.1864 (1), p.12119
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2535568006
source Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry
subjects Face recognition
Identification methods
Physics
Social networks
User profiles
title Identification of user profiles in online social networks: a combined approach with face recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20user%20profiles%20in%20online%20social%20networks:%20a%20combined%20approach%20with%20face%20recognition&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Oliseenko,%20V.D.&rft.date=2021-05-01&rft.volume=1864&rft.issue=1&rft.spage=12119&rft.pages=12119-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1864/1/012119&rft_dat=%3Cproquest_cross%3E2535568006%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3179-374ad7a53ccae1d4d26e7949c062943ad3d64b404f139abbc63d46742f8c99083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535568006&rft_id=info:pmid/&rfr_iscdi=true