Loading…
Correspondence of eikonal quasinormal modes and unstable fundamental photon orbits for Kerr-Newman black hole
In this work, we study the relation of the eikonal quasinormal modes (EQNMs) and the unstable fundamental photon orbits (UFPOs) in the Kerr-Newman spacetime. We find that in the eikonal limit the gravitational and electromagnetic perturbations of the Kerr-Newman black hole are naturally decoupled, a...
Saved in:
Published in: | arXiv.org 2021-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we study the relation of the eikonal quasinormal modes (EQNMs) and the unstable fundamental photon orbits (UFPOs) in the Kerr-Newman spacetime. We find that in the eikonal limit the gravitational and electromagnetic perturbations of the Kerr-Newman black hole are naturally decoupled, and a single one-dimensional Schr\"odinger-like equation encoding the QNM spectrum can be derived. We then show that the decoupled Teukolsky master equation and the Klein-Gordon equation for the massless scalar field in the Kerr-Newman spacetime are of the same form in the eikonal limit. As a direct consequence, taking into account of the boundary conditions for EQNMs we show an exact correspondence between EQNMs and UFPOs, that is, EQNM/UFPO correspondence. More precisely, similar to the Kerr case, the real part of EQNM's frequency is a linear combination of the precessional and (polar) orbital frequencies, while the imaginary part of the frequency is proportional to the Lyapunov exponent of the UFPO. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2105.14268 |