Loading…

Experimental Realization of Schumacher's Information Geometric Bell Inequality

Quantum mechanics can produce correlations that are stronger than classically allowed. This stronger-than-classical correlation is the "fuel" for quantum computing. In 1991 Schumacher forwarded a beautiful geometric approach, analogous to the well-known result of Bell, to capture non-class...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-06
Main Authors: Rezaei, Tahereh, Aslmarand, Shahabeddin M, Snyder, Robert, Khajavi, Behzad, Alsing, Paul M, Fanto, Michael, Doyeol, Ahn, Miller, Warner A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rezaei, Tahereh
Aslmarand, Shahabeddin M
Snyder, Robert
Khajavi, Behzad
Alsing, Paul M
Fanto, Michael
Doyeol
Ahn
Miller, Warner A
description Quantum mechanics can produce correlations that are stronger than classically allowed. This stronger-than-classical correlation is the "fuel" for quantum computing. In 1991 Schumacher forwarded a beautiful geometric approach, analogous to the well-known result of Bell, to capture non-classicality of this correlation for a singlet state. He used well-established information distance defined on an ensemble of identically-prepared states. He calculated that for certain detector settings used to measure the entangled state, the resulting geometry violated a triangle inequality -- a violation that is not possible classically. This provided a novel information-based geometric Bell inequality in terms of a "covariance distance." Here we experimentally-reproduce his construction and demonstrate a definitive violation for a Bell state of two photons based on the usual spontaneous parametric down-conversion in a paired BBO crystal. The state we produced had a visibility of \(V_{ad}=0.970\). We discuss generalizations to higher dimensional multipartite quantum states.
doi_str_mv 10.48550/arxiv.2106.00194
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2536117585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536117585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-dfc30954276f08ba1c1200c464e279ed14b737f274a7e452f2b09a40e78ff2853</originalsourceid><addsrcrecordid>eNotjVFLwzAUhYMgOOZ-gG8FH3xqvblJmvZRx9wGQ0H3PtLshnWkzZa2Mv31FubTefjOdw5jDxwyWSgFzyZe6u8MOeQZAC_lDZugEDwtJOIdm3XdEQAw16iUmLD3xeVEsW6o7Y1PPsn4-tf0dWiT4JIvexgaYw8Un7pk3boQmytbUmioj7VNXsn7EdF5GM3-557dOuM7mv3nlG3fFtv5Kt18LNfzl01qFKp076yAUknUuYOiMtxyBLAyl4S6pD2XlRbaoZZGk1TosILSSCBdOIeFElP2eJ09xXAeqOt3xzDEdnzcoRI551qNrT91f0-b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536117585</pqid></control><display><type>article</type><title>Experimental Realization of Schumacher's Information Geometric Bell Inequality</title><source>Publicly Available Content Database</source><creator>Rezaei, Tahereh ; Aslmarand, Shahabeddin M ; Snyder, Robert ; Khajavi, Behzad ; Alsing, Paul M ; Fanto, Michael ; Doyeol ; Ahn ; Miller, Warner A</creator><creatorcontrib>Rezaei, Tahereh ; Aslmarand, Shahabeddin M ; Snyder, Robert ; Khajavi, Behzad ; Alsing, Paul M ; Fanto, Michael ; Doyeol ; Ahn ; Miller, Warner A</creatorcontrib><description>Quantum mechanics can produce correlations that are stronger than classically allowed. This stronger-than-classical correlation is the "fuel" for quantum computing. In 1991 Schumacher forwarded a beautiful geometric approach, analogous to the well-known result of Bell, to capture non-classicality of this correlation for a singlet state. He used well-established information distance defined on an ensemble of identically-prepared states. He calculated that for certain detector settings used to measure the entangled state, the resulting geometry violated a triangle inequality -- a violation that is not possible classically. This provided a novel information-based geometric Bell inequality in terms of a "covariance distance." Here we experimentally-reproduce his construction and demonstrate a definitive violation for a Bell state of two photons based on the usual spontaneous parametric down-conversion in a paired BBO crystal. The state we produced had a visibility of \(V_{ad}=0.970\). We discuss generalizations to higher dimensional multipartite quantum states.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2106.00194</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>BBO crystals ; Bell's inequality ; Correlation ; Entangled states ; Quantum computing ; Quantum mechanics ; Triangles ; Visibility</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2536117585?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Rezaei, Tahereh</creatorcontrib><creatorcontrib>Aslmarand, Shahabeddin M</creatorcontrib><creatorcontrib>Snyder, Robert</creatorcontrib><creatorcontrib>Khajavi, Behzad</creatorcontrib><creatorcontrib>Alsing, Paul M</creatorcontrib><creatorcontrib>Fanto, Michael</creatorcontrib><creatorcontrib>Doyeol</creatorcontrib><creatorcontrib>Ahn</creatorcontrib><creatorcontrib>Miller, Warner A</creatorcontrib><title>Experimental Realization of Schumacher's Information Geometric Bell Inequality</title><title>arXiv.org</title><description>Quantum mechanics can produce correlations that are stronger than classically allowed. This stronger-than-classical correlation is the "fuel" for quantum computing. In 1991 Schumacher forwarded a beautiful geometric approach, analogous to the well-known result of Bell, to capture non-classicality of this correlation for a singlet state. He used well-established information distance defined on an ensemble of identically-prepared states. He calculated that for certain detector settings used to measure the entangled state, the resulting geometry violated a triangle inequality -- a violation that is not possible classically. This provided a novel information-based geometric Bell inequality in terms of a "covariance distance." Here we experimentally-reproduce his construction and demonstrate a definitive violation for a Bell state of two photons based on the usual spontaneous parametric down-conversion in a paired BBO crystal. The state we produced had a visibility of \(V_{ad}=0.970\). We discuss generalizations to higher dimensional multipartite quantum states.</description><subject>BBO crystals</subject><subject>Bell's inequality</subject><subject>Correlation</subject><subject>Entangled states</subject><subject>Quantum computing</subject><subject>Quantum mechanics</subject><subject>Triangles</subject><subject>Visibility</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFLwzAUhYMgOOZ-gG8FH3xqvblJmvZRx9wGQ0H3PtLshnWkzZa2Mv31FubTefjOdw5jDxwyWSgFzyZe6u8MOeQZAC_lDZugEDwtJOIdm3XdEQAw16iUmLD3xeVEsW6o7Y1PPsn4-tf0dWiT4JIvexgaYw8Un7pk3boQmytbUmioj7VNXsn7EdF5GM3-557dOuM7mv3nlG3fFtv5Kt18LNfzl01qFKp076yAUknUuYOiMtxyBLAyl4S6pD2XlRbaoZZGk1TosILSSCBdOIeFElP2eJ09xXAeqOt3xzDEdnzcoRI551qNrT91f0-b</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Rezaei, Tahereh</creator><creator>Aslmarand, Shahabeddin M</creator><creator>Snyder, Robert</creator><creator>Khajavi, Behzad</creator><creator>Alsing, Paul M</creator><creator>Fanto, Michael</creator><creator>Doyeol</creator><creator>Ahn</creator><creator>Miller, Warner A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210601</creationdate><title>Experimental Realization of Schumacher's Information Geometric Bell Inequality</title><author>Rezaei, Tahereh ; Aslmarand, Shahabeddin M ; Snyder, Robert ; Khajavi, Behzad ; Alsing, Paul M ; Fanto, Michael ; Doyeol ; Ahn ; Miller, Warner A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-dfc30954276f08ba1c1200c464e279ed14b737f274a7e452f2b09a40e78ff2853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>BBO crystals</topic><topic>Bell's inequality</topic><topic>Correlation</topic><topic>Entangled states</topic><topic>Quantum computing</topic><topic>Quantum mechanics</topic><topic>Triangles</topic><topic>Visibility</topic><toplevel>online_resources</toplevel><creatorcontrib>Rezaei, Tahereh</creatorcontrib><creatorcontrib>Aslmarand, Shahabeddin M</creatorcontrib><creatorcontrib>Snyder, Robert</creatorcontrib><creatorcontrib>Khajavi, Behzad</creatorcontrib><creatorcontrib>Alsing, Paul M</creatorcontrib><creatorcontrib>Fanto, Michael</creatorcontrib><creatorcontrib>Doyeol</creatorcontrib><creatorcontrib>Ahn</creatorcontrib><creatorcontrib>Miller, Warner A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezaei, Tahereh</au><au>Aslmarand, Shahabeddin M</au><au>Snyder, Robert</au><au>Khajavi, Behzad</au><au>Alsing, Paul M</au><au>Fanto, Michael</au><au>Doyeol</au><au>Ahn</au><au>Miller, Warner A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Realization of Schumacher's Information Geometric Bell Inequality</atitle><jtitle>arXiv.org</jtitle><date>2021-06-01</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Quantum mechanics can produce correlations that are stronger than classically allowed. This stronger-than-classical correlation is the "fuel" for quantum computing. In 1991 Schumacher forwarded a beautiful geometric approach, analogous to the well-known result of Bell, to capture non-classicality of this correlation for a singlet state. He used well-established information distance defined on an ensemble of identically-prepared states. He calculated that for certain detector settings used to measure the entangled state, the resulting geometry violated a triangle inequality -- a violation that is not possible classically. This provided a novel information-based geometric Bell inequality in terms of a "covariance distance." Here we experimentally-reproduce his construction and demonstrate a definitive violation for a Bell state of two photons based on the usual spontaneous parametric down-conversion in a paired BBO crystal. The state we produced had a visibility of \(V_{ad}=0.970\). We discuss generalizations to higher dimensional multipartite quantum states.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2106.00194</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2536117585
source Publicly Available Content Database
subjects BBO crystals
Bell's inequality
Correlation
Entangled states
Quantum computing
Quantum mechanics
Triangles
Visibility
title Experimental Realization of Schumacher's Information Geometric Bell Inequality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Realization%20of%20Schumacher's%20Information%20Geometric%20Bell%20Inequality&rft.jtitle=arXiv.org&rft.au=Rezaei,%20Tahereh&rft.date=2021-06-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2106.00194&rft_dat=%3Cproquest%3E2536117585%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-dfc30954276f08ba1c1200c464e279ed14b737f274a7e452f2b09a40e78ff2853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536117585&rft_id=info:pmid/&rfr_iscdi=true